Bytedeco makes native libraries available to the Java platform by offering ready-to-use bindings generated with the codeveloped JavaCPP technology. This, we hope, is the missing bridge between Java and C/C++, bringing compute-intensive science, multimedia, computer vision, deep learning, etc to the Java platform.
Core Technologies
- JavaCPP [API] – A tool that can not only generate JNI code but also build native wrapper library files from an appropriate interface file written entirely in Java. It can also parse automatically C/C++ header files to produce the required Java interface files.
Prebuilt Java Bindings to C/C++ Libraries
These are part of a project that we call the JavaCPP Presets. Many coexist in the same GitHub repository, and all use JavaCPP to wrap predefined C/C++ libraries from open-source land. The bindings expose almost all of the relevant APIs and make them available in a portable and user-friendly fashion to any Java virtual machine (including Android), as if they were like any other normal Java libraries. We have presets for the following C/C++ libraries:- OpenCV – [sample usage] [API] – More than 2500 optimized computer vision and machine learning algorithms
- FFmpeg – [sample usage] [API] – A complete, cross-platform solution to record, convert and stream audio and video
- FlyCapture – [sample usage] [API] – Image acquisition and camera control software from PGR
- Spinnaker – [sample usage] [API] – Image acquisition and camera control software from FLIR
- libdc1394 – [sample usage] [API] – A high-level API for DCAM/IIDC cameras
- OpenKinect – [sample usage] [API] [API 2] – Open source library to use Kinect for Xbox and for Windows sensors
- librealsense – [sample usage] [API] [API 2] – Cross-platform library for Intel RealSense depth and tracking cameras
- videoInput – [sample usage] [API] – A free Windows video capture library
- ARToolKitPlus – [sample usage] [API] – Marker-based augmented reality tracking library
- Chilitags – [sample usage] [API] – Robust fiducial markers for augmented reality and robotics
- flandmark – [sample usage] [API] – Open-source implementation of facial landmark detector
- Arrow – [sample usage] [API] – A cross-language development platform for in-memory data
- HDF5 – [sample usage] [API] – Makes possible the management of extremely large and complex data collections
- Hyperscan – [sample usage] [API] – High-performance regular expression matching library
- LZ4 – [sample usage] [API] – Extremely fast compression algorithm
- MKL – [sample usage] [API] – The fastest and most-used math library for Intel-based systems
- oneDNN – [sample usage] [API] [API 2] – Intel Math Kernel Library for Deep Neural Networks (DNNL)
- OpenBLAS – [sample usage] [API] – An optimized BLAS library based on GotoBLAS2 1.13 BSD version, plus LAPACK
- ARPACK-NG – [sample usage] [API] – Collection of subroutines designed to solve large scale eigenvalue problems
- CMINPACK – [sample usage] [API] – For solving nonlinear equations and nonlinear least squares problems
- FFTW – [sample usage] [API] – Fast computing of the discrete Fourier transform (DFT) in one or more dimensions
- GSL – [sample usage] [API] – The GNU Scientific Library, a numerical library for C and C++ programmers
- CPython – [sample usage] [API] – The standard runtime of the Python programming language
- NumPy – [sample usage] [API] – Base N-dimensional array package
- SciPy – [sample usage] [API] – Fundamental library for scientific computing
- Gym – [sample usage] [API] – A toolkit for developing and comparing reinforcement learning algorithms
- LLVM – [sample usage] [API] – A collection of modular and reusable compiler and toolchain technologies
- libffi – [sample usage] [API] – A portable foreign-function interface library
- libpostal – [sample usage] [API] – For parsing/normalizing street addresses around the world
- LibRaw – [sample usage] [API] – A simple and unified interface for RAW files generated by digital photo cameras
- Leptonica – [sample usage] [API] – Software useful for image processing and image analysis applications
- Tesseract – [sample usage] [API] – Probably the most accurate open source OCR engine available
- Caffe – [sample usage] [API] – A fast open framework for deep learning
- OpenPose – [sample usage] [API] – Real-time multi-person keypoint detection for body, face, hands, and foot estimation
- CUDA – [sample usage] [API] – Arguably the most popular parallel computing platform for GPUs
- NVIDIA Video Codec SDK – [sample usage] [API] – An API for hardware accelerated video encode and decode
- OpenCL – [sample usage] [API] – Open standard for parallel programming of heterogeneous systems
- MXNet – [sample usage] [API] – Flexible and efficient library for deep learning
- PyTorch – [sample usage] [API] – Tensors and dynamic neural networks with strong GPU acceleration
- SentencePiece – [sample usage] [API] – Unsupervised text tokenizer for neural-network-based text generation
- TensorFlow – [sample usage] [API] – Computation using data flow graphs for scalable machine learning
- TensorFlow Lite – [sample usage] [API] – An open source deep learning framework for on-device inference
- TensorRT – [sample usage] [API] – High-performance deep learning inference optimizer and runtime
- Triton Inference Server – [sample usage] [API] – An optimized cloud and edge inferencing solution
- ALE – [sample usage] [API] – The Arcade Learning Environment to develop AI agents for Atari 2600 games
- DepthAI – [sample usage] [API] – An embedded spatial AI platform built around Intel Myriad X
- ONNX – [sample usage] [API] – Open Neural Network Exchange, an open source format for AI models
- nGraph – [sample usage] [API] – An open source C++ library, compiler, and runtime for deep learning frameworks
- ONNX Runtime – [sample usage] [API] – Cross-platform, high performance scoring engine for ML models
- TVM – [sample usage] [API] – An end to end machine learning compiler framework for CPUs, GPUs and accelerators
- Bullet Physics SDK – [sample usage] [API] – Real-time collision detection and multi-physics simulation
- LiquidFun – [sample usage] [API] – 2D physics engine for games
- Qt – [sample usage] [API] – A cross-platform framework that is usually used as a graphical toolkit
- Skia – [sample usage] [API] – A complete 2D graphic library for drawing text, geometries, and images
- cpu_features – [sample usage] [API] – A cross platform C99 library to get cpu features at runtime
- ModSecurity – [sample usage] [API] – A cross platform web application firewall (WAF) engine for Apache, IIS and Nginx
- Systems – [sample usage] [API] – To call native functions of operating systems (glibc, XNU libc, Win32, etc)
- Add here your favorite C/C++ library, for example: Caffe2, OpenNI, OpenMesh, PCL, etc. Read about how to do that.
We will add more to this list as they are made, including those from outside the bytedeco/javacpp-presets repository.
Projects Leveraging the Presets Bindings
- JavaCV [API] – Library based on the JavaCPP Presets that depends on commonly used native libraries in the field of computer vision to facilitate the development of those applications on the Java platform. It provides easy-to-use interfaces to grab frames from cameras and audio/video streams, process them, and record them back on disk or send them over the network.
- JavaCV Examples – Collection of examples originally written in C++ for the book entitled OpenCV 2 Computer Vision Application Programming Cookbook by Robert Laganière, but ported to JavaCV and written in Scala.
- ProCamCalib – Sample JavaCV application that can perform geometric and photometric calibration of a set of video projectors and color cameras.
- ProCamTracker – Another sample JavaCV application that uses the calibration from ProCamCalib to implement a vision method that tracks a textured planar surface and realizes markerless interactive augmented reality with projection mapping.
More Project Information
Please refer to the contribute and download pages for more information about how to help out or obtain this software.
See the developer site on GitHub for more general information about the Bytedeco projects.
Latest News
First release at Bytedeco
Welcome to Bytedeco! The new home of JavaCPP, JavaCPP Presets, JavaCV, ProCamCalib, and ProCamTracker, hosted at GitHub. This post also coincides with their latest releases at version 0.8. Please click on the appropriate link to download and obtain more information about your favorite project. Further, all binary artifacts are now made available through the Maven Central Repository.
The projects under this new version number also come with a few big changes. First, the group of the artifacts and the package of the classes have been renamed to org.bytedeco
. Second, JavaCV is now based on the JavaCPP Presets, which comes with an interface that maps the functionality of OpenCV more closely to its original C++ API, among other things. This is both a good thing, and a bad thing, because we lose some backward compatibility with previous versions of JavaCV. In the long run though, providing interfaces to C++ libraries that map as closely as possible to the original API is easier for both the mechanical parser and the ultimate user, so I feel that was the right choice to make.
That said, to make the transition a bit less painful, here are a few tips to help you adapt your code:
- In your build files, replace the
com.googlecode.javacpp
andcom.googlecode.javacv
groups withorg.bytedeco
. You may also have to add a couple of additional dependencies based on the new organization of the artifacts for the JavaCPP Presets. - Rename import statements based on the following mapping:
com.googlecode.javacpp
⇒org.bytedeco.javacpp
com.googlecode.javacv.cpp
⇒org.bytedeco.javacpp
com.googlecode.javacv
⇒org.bytedeco.javacv
- For code that uses the C++ API of OpenCV, adjust the object types as follows:
CvMat
andIplImage
⇒Mat
CvRect
⇒Rect
CvPoint
⇒Point
CvPoint2D32f
⇒Point2f
CvPoint3D32f
⇒Point3f
CvPoint2D64f
⇒Point2d
CvPoint3D64f
⇒Point3d
CvSize
⇒Size
CvSize2D32f
⇒Size2f
CvBox2D
⇒RotatedRect
CvScalar
⇒Scalar
The latter come with constructors to wrap the former, in addition toas<OriginalTypeName>()
methods that map to the corresponding cast operators. Neither operations requires large amounts of data to be copied, so making the switch should not be too difficult.
There are a few other things here and there, but nothing else with major consequences, as far as I know. If you run up against something you are having a hard time solving though, please share your experience with everyone on the mailing list. I am sure a kind soul will help you out.
So, what next? At the moment, other than making news releases and a few useful blog posts every now and then, I am not planning anything in particular for this site, but for the future, who knows…