public class opencv_cudaimgproc extends opencv_cudaimgproc
Modifier and Type | Field and Description |
---|---|
static int |
ALPHA_ATOP
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_ATOP_PREMUL
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_IN
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_IN_PREMUL
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_OUT
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_OUT_PREMUL
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_OVER
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_OVER_PREMUL
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_PLUS
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_PLUS_PREMUL
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_PREMUL
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_XOR
enum cv::cuda::AlphaCompTypes
|
static int |
ALPHA_XOR_PREMUL
enum cv::cuda::AlphaCompTypes
|
static int |
CCL_BKE
enum cv::cuda::ConnectedComponentsAlgorithmsTypes
|
static int |
CCL_DEFAULT
enum cv::cuda::ConnectedComponentsAlgorithmsTypes
|
static int |
COLOR_BayerBG2BGR_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerBG2GRAY_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerBG2RGB_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerGB2BGR_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerGB2GRAY_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerGB2RGB_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerGR2BGR_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerGR2GRAY_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerGR2RGB_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerRG2BGR_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerRG2GRAY_MHT
enum cv::cuda::DemosaicTypes
|
static int |
COLOR_BayerRG2RGB_MHT
enum cv::cuda::DemosaicTypes
|
static int |
FIRST_ORDER_MOMENTS
enum cv::cuda::MomentsOrder
|
static int |
SECOND_ORDER_MOMENTS
enum cv::cuda::MomentsOrder
|
static int |
THIRD_ORDER_MOMENTS
enum cv::cuda::MomentsOrder
|
Constructor and Description |
---|
opencv_cudaimgproc() |
Modifier and Type | Method and Description |
---|---|
static void |
alphaComp(GpuMat img1,
GpuMat img2,
GpuMat dst,
int alpha_op) |
static void |
alphaComp(GpuMat img1,
GpuMat img2,
GpuMat dst,
int alpha_op,
Stream stream) |
static void |
alphaComp(Mat img1,
Mat img2,
Mat dst,
int alpha_op) |
static void |
alphaComp(Mat img1,
Mat img2,
Mat dst,
int alpha_op,
Stream stream)
\brief Composites two images using alpha opacity values contained in each image.
|
static void |
alphaComp(UMat img1,
UMat img2,
UMat dst,
int alpha_op) |
static void |
alphaComp(UMat img1,
UMat img2,
UMat dst,
int alpha_op,
Stream stream) |
static void |
bilateralFilter(GpuMat src,
GpuMat dst,
int kernel_size,
float sigma_color,
float sigma_spatial) |
static void |
bilateralFilter(GpuMat src,
GpuMat dst,
int kernel_size,
float sigma_color,
float sigma_spatial,
int borderMode,
Stream stream) |
static void |
bilateralFilter(Mat src,
Mat dst,
int kernel_size,
float sigma_color,
float sigma_spatial) |
static void |
bilateralFilter(Mat src,
Mat dst,
int kernel_size,
float sigma_color,
float sigma_spatial,
int borderMode,
Stream stream)
\brief Performs bilateral filtering of passed image
|
static void |
bilateralFilter(UMat src,
UMat dst,
int kernel_size,
float sigma_color,
float sigma_spatial) |
static void |
bilateralFilter(UMat src,
UMat dst,
int kernel_size,
float sigma_color,
float sigma_spatial,
int borderMode,
Stream stream) |
static void |
blendLinear(GpuMat img1,
GpuMat img2,
GpuMat weights1,
GpuMat weights2,
GpuMat result) |
static void |
blendLinear(GpuMat img1,
GpuMat img2,
GpuMat weights1,
GpuMat weights2,
GpuMat result,
Stream stream) |
static void |
blendLinear(Mat img1,
Mat img2,
Mat weights1,
Mat weights2,
Mat result) |
static void |
blendLinear(Mat img1,
Mat img2,
Mat weights1,
Mat weights2,
Mat result,
Stream stream)
\brief Performs linear blending of two images.
|
static void |
blendLinear(UMat img1,
UMat img2,
UMat weights1,
UMat weights2,
UMat result) |
static void |
blendLinear(UMat img1,
UMat img2,
UMat weights1,
UMat weights2,
UMat result,
Stream stream) |
static void |
calcHist(GpuMat src,
GpuMat hist) |
static void |
calcHist(GpuMat src,
GpuMat mask,
GpuMat hist) |
static void |
calcHist(GpuMat src,
GpuMat mask,
GpuMat hist,
Stream stream) |
static void |
calcHist(GpuMat src,
GpuMat hist,
Stream stream) |
static void |
calcHist(Mat src,
Mat hist) |
static void |
calcHist(Mat src,
Mat mask,
Mat hist) |
static void |
calcHist(Mat src,
Mat mask,
Mat hist,
Stream stream)
\brief Calculates histogram for one channel 8-bit image confined in given mask.
|
static void |
calcHist(Mat src,
Mat hist,
Stream stream)
\} cudaimgproc_color
|
static void |
calcHist(UMat src,
UMat hist) |
static void |
calcHist(UMat src,
UMat hist,
Stream stream) |
static void |
calcHist(UMat src,
UMat mask,
UMat hist) |
static void |
calcHist(UMat src,
UMat mask,
UMat hist,
Stream stream) |
static void |
connectedComponents(GpuMat image,
GpuMat labels) |
static void |
connectedComponents(GpuMat image,
GpuMat labels,
int connectivity,
int ltype) |
static void |
connectedComponents(Mat image,
Mat labels) |
static void |
connectedComponents(Mat image,
Mat labels,
int connectivity,
int ltype)
\overload
|
static void |
connectedComponents(UMat image,
UMat labels) |
static void |
connectedComponents(UMat image,
UMat labels,
int connectivity,
int ltype) |
static void |
connectedComponentsWithAlgorithm(GpuMat image,
GpuMat labels,
int connectivity,
int ltype,
int ccltype) |
static void |
connectedComponentsWithAlgorithm(Mat image,
Mat labels,
int connectivity,
int ltype,
int ccltype)
\brief Computes the Connected Components Labeled image of a binary image.
|
static void |
connectedComponentsWithAlgorithm(UMat image,
UMat labels,
int connectivity,
int ltype,
int ccltype) |
static Moments |
convertSpatialMoments(Mat spatialMoments,
int order,
int momentsType)
\brief Converts the spatial image moments returned from cuda::spatialMoments to cv::Moments.
|
static CannyEdgeDetector |
createCannyEdgeDetector(double low_thresh,
double high_thresh) |
static CannyEdgeDetector |
createCannyEdgeDetector(double low_thresh,
double high_thresh,
int apperture_size,
boolean L2gradient)
\brief Creates implementation for cuda::CannyEdgeDetector .
|
static CudaCLAHE |
createCLAHE() |
static CudaCLAHE |
createCLAHE(double clipLimit,
Size tileGridSize)
\brief Creates implementation for cuda::CLAHE .
|
static GeneralizedHoughBallard |
createGeneralizedHoughBallard()
\brief Creates implementation for generalized hough transform from \cite Ballard1981 .
|
static GeneralizedHoughGuil |
createGeneralizedHoughGuil()
\brief Creates implementation for generalized hough transform from \cite Guil1999 .
|
static CornersDetector |
createGoodFeaturesToTrackDetector(int srcType) |
static CornersDetector |
createGoodFeaturesToTrackDetector(int srcType,
int maxCorners,
double qualityLevel,
double minDistance,
int blockSize,
boolean useHarrisDetector,
double harrisK)
\brief Creates implementation for cuda::CornersDetector .
|
static CornernessCriteria |
createHarrisCorner(int srcType,
int blockSize,
int ksize,
double k) |
static CornernessCriteria |
createHarrisCorner(int srcType,
int blockSize,
int ksize,
double k,
int borderType)
\brief Creates implementation for Harris cornerness criteria.
|
static HoughCirclesDetector |
createHoughCirclesDetector(float dp,
float minDist,
int cannyThreshold,
int votesThreshold,
int minRadius,
int maxRadius) |
static HoughCirclesDetector |
createHoughCirclesDetector(float dp,
float minDist,
int cannyThreshold,
int votesThreshold,
int minRadius,
int maxRadius,
int maxCircles)
\brief Creates implementation for cuda::HoughCirclesDetector .
|
static HoughLinesDetector |
createHoughLinesDetector(float rho,
float theta,
int threshold) |
static HoughLinesDetector |
createHoughLinesDetector(float rho,
float theta,
int threshold,
boolean doSort,
int maxLines)
\brief Creates implementation for cuda::HoughLinesDetector .
|
static HoughSegmentDetector |
createHoughSegmentDetector(float rho,
float theta,
int minLineLength,
int maxLineGap) |
static HoughSegmentDetector |
createHoughSegmentDetector(float rho,
float theta,
int minLineLength,
int maxLineGap,
int maxLines,
int threshold)
\brief Creates implementation for cuda::HoughSegmentDetector .
|
static CornernessCriteria |
createMinEigenValCorner(int srcType,
int blockSize,
int ksize) |
static CornernessCriteria |
createMinEigenValCorner(int srcType,
int blockSize,
int ksize,
int borderType)
\brief Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
cornerness criteria).
|
static TemplateMatching |
createTemplateMatching(int srcType,
int method) |
static TemplateMatching |
createTemplateMatching(int srcType,
int method,
Size user_block_size)
\brief Creates implementation for cuda::TemplateMatching .
|
static void |
cvtColor(GpuMat src,
GpuMat dst,
int code) |
static void |
cvtColor(GpuMat src,
GpuMat dst,
int code,
int dcn,
Stream stream) |
static void |
cvtColor(Mat src,
Mat dst,
int code) |
static void |
cvtColor(Mat src,
Mat dst,
int code,
int dcn,
Stream stream)
\addtogroup cudaimgproc
\{
|
static void |
cvtColor(UMat src,
UMat dst,
int code) |
static void |
cvtColor(UMat src,
UMat dst,
int code,
int dcn,
Stream stream) |
static void |
demosaicing(GpuMat src,
GpuMat dst,
int code) |
static void |
demosaicing(GpuMat src,
GpuMat dst,
int code,
int dcn,
Stream stream) |
static void |
demosaicing(Mat src,
Mat dst,
int code) |
static void |
demosaicing(Mat src,
Mat dst,
int code,
int dcn,
Stream stream)
\brief Converts an image from Bayer pattern to RGB or grayscale.
|
static void |
demosaicing(UMat src,
UMat dst,
int code) |
static void |
demosaicing(UMat src,
UMat dst,
int code,
int dcn,
Stream stream) |
static void |
equalizeHist(GpuMat src,
GpuMat dst) |
static void |
equalizeHist(GpuMat src,
GpuMat dst,
Stream stream) |
static void |
equalizeHist(Mat src,
Mat dst) |
static void |
equalizeHist(Mat src,
Mat dst,
Stream stream)
\brief Equalizes the histogram of a grayscale image.
|
static void |
equalizeHist(UMat src,
UMat dst) |
static void |
equalizeHist(UMat src,
UMat dst,
Stream stream) |
static void |
evenLevels(GpuMat levels,
int nLevels,
int lowerLevel,
int upperLevel) |
static void |
evenLevels(GpuMat levels,
int nLevels,
int lowerLevel,
int upperLevel,
Stream stream) |
static void |
evenLevels(Mat levels,
int nLevels,
int lowerLevel,
int upperLevel) |
static void |
evenLevels(Mat levels,
int nLevels,
int lowerLevel,
int upperLevel,
Stream stream)
\brief Computes levels with even distribution.
|
static void |
evenLevels(UMat levels,
int nLevels,
int lowerLevel,
int upperLevel) |
static void |
evenLevels(UMat levels,
int nLevels,
int lowerLevel,
int upperLevel,
Stream stream) |
static void |
gammaCorrection(GpuMat src,
GpuMat dst) |
static void |
gammaCorrection(GpuMat src,
GpuMat dst,
boolean forward,
Stream stream) |
static void |
gammaCorrection(Mat src,
Mat dst) |
static void |
gammaCorrection(Mat src,
Mat dst,
boolean forward,
Stream stream)
\brief Routines for correcting image color gamma.
|
static void |
gammaCorrection(UMat src,
UMat dst) |
static void |
gammaCorrection(UMat src,
UMat dst,
boolean forward,
Stream stream) |
static void |
histEven(GpuMat src,
GpuMat hist,
int[] histSize,
int[] lowerLevel,
int[] upperLevel) |
static void |
histEven(GpuMat src,
GpuMat hist,
int[] histSize,
int[] lowerLevel,
int[] upperLevel,
Stream stream) |
static void |
histEven(GpuMat src,
GpuMat hist,
IntBuffer histSize,
IntBuffer lowerLevel,
IntBuffer upperLevel) |
static void |
histEven(GpuMat src,
GpuMat hist,
IntBuffer histSize,
IntBuffer lowerLevel,
IntBuffer upperLevel,
Stream stream) |
static void |
histEven(GpuMat src,
GpuMat hist,
int histSize,
int lowerLevel,
int upperLevel) |
static void |
histEven(GpuMat src,
GpuMat hist,
int histSize,
int lowerLevel,
int upperLevel,
Stream stream) |
static void |
histEven(GpuMat src,
GpuMat hist,
IntPointer histSize,
IntPointer lowerLevel,
IntPointer upperLevel) |
static void |
histEven(GpuMat src,
GpuMat hist,
IntPointer histSize,
IntPointer lowerLevel,
IntPointer upperLevel,
Stream stream) |
static void |
histEven(Mat src,
GpuMat hist,
int[] histSize,
int[] lowerLevel,
int[] upperLevel) |
static void |
histEven(Mat src,
GpuMat hist,
int[] histSize,
int[] lowerLevel,
int[] upperLevel,
Stream stream) |
static void |
histEven(Mat src,
GpuMat hist,
IntBuffer histSize,
IntBuffer lowerLevel,
IntBuffer upperLevel) |
static void |
histEven(Mat src,
GpuMat hist,
IntBuffer histSize,
IntBuffer lowerLevel,
IntBuffer upperLevel,
Stream stream) |
static void |
histEven(Mat src,
GpuMat hist,
IntPointer histSize,
IntPointer lowerLevel,
IntPointer upperLevel) |
static void |
histEven(Mat src,
GpuMat hist,
IntPointer histSize,
IntPointer lowerLevel,
IntPointer upperLevel,
Stream stream)
\overload
|
static void |
histEven(Mat src,
Mat hist,
int histSize,
int lowerLevel,
int upperLevel) |
static void |
histEven(Mat src,
Mat hist,
int histSize,
int lowerLevel,
int upperLevel,
Stream stream)
\brief Calculates a histogram with evenly distributed bins.
|
static void |
histEven(UMat src,
GpuMat hist,
int[] histSize,
int[] lowerLevel,
int[] upperLevel) |
static void |
histEven(UMat src,
GpuMat hist,
int[] histSize,
int[] lowerLevel,
int[] upperLevel,
Stream stream) |
static void |
histEven(UMat src,
GpuMat hist,
IntBuffer histSize,
IntBuffer lowerLevel,
IntBuffer upperLevel) |
static void |
histEven(UMat src,
GpuMat hist,
IntBuffer histSize,
IntBuffer lowerLevel,
IntBuffer upperLevel,
Stream stream) |
static void |
histEven(UMat src,
GpuMat hist,
IntPointer histSize,
IntPointer lowerLevel,
IntPointer upperLevel) |
static void |
histEven(UMat src,
GpuMat hist,
IntPointer histSize,
IntPointer lowerLevel,
IntPointer upperLevel,
Stream stream) |
static void |
histEven(UMat src,
UMat hist,
int histSize,
int lowerLevel,
int upperLevel) |
static void |
histEven(UMat src,
UMat hist,
int histSize,
int lowerLevel,
int upperLevel,
Stream stream) |
static void |
histRange(GpuMat src,
GpuMat hist,
GpuMat levels) |
static void |
histRange(GpuMat src,
GpuMat hist,
GpuMat levels,
Stream stream) |
static void |
histRange(Mat src,
GpuMat hist,
GpuMat levels) |
static void |
histRange(Mat src,
GpuMat hist,
GpuMat levels,
Stream stream)
\overload
|
static void |
histRange(Mat src,
Mat hist,
Mat levels) |
static void |
histRange(Mat src,
Mat hist,
Mat levels,
Stream stream)
\brief Calculates a histogram with bins determined by the levels array.
|
static void |
histRange(UMat src,
GpuMat hist,
GpuMat levels) |
static void |
histRange(UMat src,
GpuMat hist,
GpuMat levels,
Stream stream) |
static void |
histRange(UMat src,
UMat hist,
UMat levels) |
static void |
histRange(UMat src,
UMat hist,
UMat levels,
Stream stream) |
static void |
meanShiftFiltering(GpuMat src,
GpuMat dst,
int sp,
int sr) |
static void |
meanShiftFiltering(GpuMat src,
GpuMat dst,
int sp,
int sr,
TermCriteria criteria,
Stream stream) |
static void |
meanShiftFiltering(Mat src,
Mat dst,
int sp,
int sr) |
static void |
meanShiftFiltering(Mat src,
Mat dst,
int sp,
int sr,
TermCriteria criteria,
Stream stream)
\} cudaimgproc_feature
|
static void |
meanShiftFiltering(UMat src,
UMat dst,
int sp,
int sr) |
static void |
meanShiftFiltering(UMat src,
UMat dst,
int sp,
int sr,
TermCriteria criteria,
Stream stream) |
static void |
meanShiftProc(GpuMat src,
GpuMat dstr,
GpuMat dstsp,
int sp,
int sr) |
static void |
meanShiftProc(GpuMat src,
GpuMat dstr,
GpuMat dstsp,
int sp,
int sr,
TermCriteria criteria,
Stream stream) |
static void |
meanShiftProc(Mat src,
Mat dstr,
Mat dstsp,
int sp,
int sr) |
static void |
meanShiftProc(Mat src,
Mat dstr,
Mat dstsp,
int sp,
int sr,
TermCriteria criteria,
Stream stream)
\brief Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.
|
static void |
meanShiftProc(UMat src,
UMat dstr,
UMat dstsp,
int sp,
int sr) |
static void |
meanShiftProc(UMat src,
UMat dstr,
UMat dstsp,
int sp,
int sr,
TermCriteria criteria,
Stream stream) |
static void |
meanShiftSegmentation(GpuMat src,
GpuMat dst,
int sp,
int sr,
int minsize) |
static void |
meanShiftSegmentation(GpuMat src,
GpuMat dst,
int sp,
int sr,
int minsize,
TermCriteria criteria,
Stream stream) |
static void |
meanShiftSegmentation(Mat src,
Mat dst,
int sp,
int sr,
int minsize) |
static void |
meanShiftSegmentation(Mat src,
Mat dst,
int sp,
int sr,
int minsize,
TermCriteria criteria,
Stream stream)
\brief Performs a mean-shift segmentation of the source image and eliminates small segments.
|
static void |
meanShiftSegmentation(UMat src,
UMat dst,
int sp,
int sr,
int minsize) |
static void |
meanShiftSegmentation(UMat src,
UMat dst,
int sp,
int sr,
int minsize,
TermCriteria criteria,
Stream stream) |
static Moments |
moments(GpuMat src) |
static Moments |
moments(GpuMat src,
boolean binaryImage,
int order,
int momentsType) |
static Moments |
moments(Mat src) |
static Moments |
moments(Mat src,
boolean binaryImage,
int order,
int momentsType)
\brief Calculates all of the moments up to the 3rd order of a rasterized shape.
|
static Moments |
moments(UMat src) |
static Moments |
moments(UMat src,
boolean binaryImage,
int order,
int momentsType) |
static int |
numMoments(int order)
\brief Returns the number of image moments less than or equal to the largest image moments \a order.
|
static void |
spatialMoments(GpuMat src,
GpuMat moments) |
static void |
spatialMoments(GpuMat src,
GpuMat moments,
boolean binaryImage,
int order,
int momentsType,
Stream stream) |
static void |
spatialMoments(Mat src,
Mat moments) |
static void |
spatialMoments(Mat src,
Mat moments,
boolean binaryImage,
int order,
int momentsType,
Stream stream)
\brief Calculates all of the spatial moments up to the 3rd order of a rasterized shape.
|
static void |
spatialMoments(UMat src,
UMat moments) |
static void |
spatialMoments(UMat src,
UMat moments,
boolean binaryImage,
int order,
int momentsType,
Stream stream) |
static void |
swapChannels(GpuMat image,
int[] dstOrder) |
static void |
swapChannels(GpuMat image,
int[] dstOrder,
Stream stream) |
static void |
swapChannels(GpuMat image,
IntBuffer dstOrder) |
static void |
swapChannels(GpuMat image,
IntBuffer dstOrder,
Stream stream) |
static void |
swapChannels(GpuMat image,
IntPointer dstOrder) |
static void |
swapChannels(GpuMat image,
IntPointer dstOrder,
Stream stream) |
static void |
swapChannels(Mat image,
int[] dstOrder) |
static void |
swapChannels(Mat image,
int[] dstOrder,
Stream stream) |
static void |
swapChannels(Mat image,
IntBuffer dstOrder) |
static void |
swapChannels(Mat image,
IntBuffer dstOrder,
Stream stream) |
static void |
swapChannels(Mat image,
IntPointer dstOrder) |
static void |
swapChannels(Mat image,
IntPointer dstOrder,
Stream stream)
\brief Exchanges the color channels of an image in-place.
|
static void |
swapChannels(UMat image,
int[] dstOrder) |
static void |
swapChannels(UMat image,
int[] dstOrder,
Stream stream) |
static void |
swapChannels(UMat image,
IntBuffer dstOrder) |
static void |
swapChannels(UMat image,
IntBuffer dstOrder,
Stream stream) |
static void |
swapChannels(UMat image,
IntPointer dstOrder) |
static void |
swapChannels(UMat image,
IntPointer dstOrder,
Stream stream) |
map
public static final int COLOR_BayerBG2BGR_MHT
public static final int COLOR_BayerGB2BGR_MHT
public static final int COLOR_BayerRG2BGR_MHT
public static final int COLOR_BayerGR2BGR_MHT
public static final int COLOR_BayerBG2RGB_MHT
public static final int COLOR_BayerGB2RGB_MHT
public static final int COLOR_BayerRG2RGB_MHT
public static final int COLOR_BayerGR2RGB_MHT
public static final int COLOR_BayerBG2GRAY_MHT
public static final int COLOR_BayerGB2GRAY_MHT
public static final int COLOR_BayerRG2GRAY_MHT
public static final int COLOR_BayerGR2GRAY_MHT
public static final int ALPHA_OVER
public static final int ALPHA_IN
public static final int ALPHA_OUT
public static final int ALPHA_ATOP
public static final int ALPHA_XOR
public static final int ALPHA_PLUS
public static final int ALPHA_OVER_PREMUL
public static final int ALPHA_IN_PREMUL
public static final int ALPHA_OUT_PREMUL
public static final int ALPHA_ATOP_PREMUL
public static final int ALPHA_XOR_PREMUL
public static final int ALPHA_PLUS_PREMUL
public static final int ALPHA_PREMUL
public static final int CCL_DEFAULT
public static final int CCL_BKE
public static final int FIRST_ORDER_MOMENTS
public static final int SECOND_ORDER_MOMENTS
public static final int THIRD_ORDER_MOMENTS
@Namespace(value="cv::cuda") public static void cvtColor(@ByVal Mat src, @ByVal Mat dst, int code, int dcn, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
/////////////////////////// Color Processing ///////////////////////////
\addtogroup cudaimgproc_color \{
/** \brief Converts an image from one color space to another.
src
- Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.dst
- Destination image.code
- Color space conversion code. For details, see cvtColor .dcn
- Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .stream
- Stream for the asynchronous version.
3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better performance.
cvtColor
@Namespace(value="cv::cuda") public static void cvtColor(@ByVal Mat src, @ByVal Mat dst, int code)
@Namespace(value="cv::cuda") public static void cvtColor(@ByVal UMat src, @ByVal UMat dst, int code, int dcn, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void cvtColor(@ByVal UMat src, @ByVal UMat dst, int code)
@Namespace(value="cv::cuda") public static void cvtColor(@ByVal GpuMat src, @ByVal GpuMat dst, int code, int dcn, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void cvtColor(@ByVal GpuMat src, @ByVal GpuMat dst, int code)
@Namespace(value="cv::cuda") public static void demosaicing(@ByVal Mat src, @ByVal Mat dst, int code, int dcn, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Source image (8-bit or 16-bit single channel).dst
- Destination image.code
- Color space conversion code (see the description below).dcn
- Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .stream
- Stream for the asynchronous version.
The function can do the following transformations:
- Demosaicing using bilinear interpolation
> - COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY > - COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR
- Demosaicing using Malvar-He-Cutler algorithm (\cite MHT2011)
> - COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT , > COLOR_BayerGR2GRAY_MHT > - COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT , > COLOR_BayerGR2BGR_MHT
cvtColor
@Namespace(value="cv::cuda") public static void demosaicing(@ByVal Mat src, @ByVal Mat dst, int code)
@Namespace(value="cv::cuda") public static void demosaicing(@ByVal UMat src, @ByVal UMat dst, int code, int dcn, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void demosaicing(@ByVal UMat src, @ByVal UMat dst, int code)
@Namespace(value="cv::cuda") public static void demosaicing(@ByVal GpuMat src, @ByVal GpuMat dst, int code, int dcn, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void demosaicing(@ByVal GpuMat src, @ByVal GpuMat dst, int code)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal Mat image, @Const IntPointer dstOrder, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
image
- Source image. Supports only CV_8UC4 type.dstOrder
- Integer array describing how channel values are permutated. The n-th entry of the
array contains the number of the channel that is stored in the n-th channel of the output image.
E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order.stream
- Stream for the asynchronous version.
The methods support arbitrary permutations of the original channels, including replication.
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal Mat image, @Const IntPointer dstOrder)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal Mat image, @Const IntBuffer dstOrder, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal Mat image, @Const IntBuffer dstOrder)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal Mat image, @Const int[] dstOrder, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal Mat image, @Const int[] dstOrder)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal UMat image, @Const IntPointer dstOrder, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal UMat image, @Const IntPointer dstOrder)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal UMat image, @Const IntBuffer dstOrder, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal UMat image, @Const IntBuffer dstOrder)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal UMat image, @Const int[] dstOrder, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal UMat image, @Const int[] dstOrder)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal GpuMat image, @Const IntPointer dstOrder, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal GpuMat image, @Const IntPointer dstOrder)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal GpuMat image, @Const IntBuffer dstOrder, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal GpuMat image, @Const IntBuffer dstOrder)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal GpuMat image, @Const int[] dstOrder, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void swapChannels(@ByVal GpuMat image, @Const int[] dstOrder)
@Namespace(value="cv::cuda") public static void gammaCorrection(@ByVal Mat src, @ByVal Mat dst, @Cast(value="bool") boolean forward, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Source image (3- or 4-channel 8 bit).dst
- Destination image.forward
- true for forward gamma correction or false for inverse gamma correction.stream
- Stream for the asynchronous version.@Namespace(value="cv::cuda") public static void gammaCorrection(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv::cuda") public static void gammaCorrection(@ByVal UMat src, @ByVal UMat dst, @Cast(value="bool") boolean forward, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void gammaCorrection(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv::cuda") public static void gammaCorrection(@ByVal GpuMat src, @ByVal GpuMat dst, @Cast(value="bool") boolean forward, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void gammaCorrection(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv::cuda") public static void alphaComp(@ByVal Mat img1, @ByVal Mat img2, @ByVal Mat dst, int alpha_op, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
img1
- First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.img2
- Second image. Must have the same size and the same type as img1 .dst
- Destination image.alpha_op
- Flag specifying the alpha-blending operation:
- **ALPHA_OVER**
- **ALPHA_IN**
- **ALPHA_OUT**
- **ALPHA_ATOP**
- **ALPHA_XOR**
- **ALPHA_PLUS**
- **ALPHA_OVER_PREMUL**
- **ALPHA_IN_PREMUL**
- **ALPHA_OUT_PREMUL**
- **ALPHA_ATOP_PREMUL**
- **ALPHA_XOR_PREMUL**
- **ALPHA_PLUS_PREMUL**
- **ALPHA_PREMUL**stream
- Stream for the asynchronous version.
\note - An example demonstrating the use of alphaComp can be found at opencv_source_code/samples/gpu/alpha_comp.cpp
@Namespace(value="cv::cuda") public static void alphaComp(@ByVal Mat img1, @ByVal Mat img2, @ByVal Mat dst, int alpha_op)
@Namespace(value="cv::cuda") public static void alphaComp(@ByVal UMat img1, @ByVal UMat img2, @ByVal UMat dst, int alpha_op, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void alphaComp(@ByVal UMat img1, @ByVal UMat img2, @ByVal UMat dst, int alpha_op)
@Namespace(value="cv::cuda") public static void alphaComp(@ByVal GpuMat img1, @ByVal GpuMat img2, @ByVal GpuMat dst, int alpha_op, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void alphaComp(@ByVal GpuMat img1, @ByVal GpuMat img2, @ByVal GpuMat dst, int alpha_op)
@Namespace(value="cv::cuda") public static void calcHist(@ByVal Mat src, @ByVal Mat hist, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
////////////////////////////// Histogram ///////////////////////////////
\addtogroup cudaimgproc_hist \{
/** \brief Calculates histogram for one channel 8-bit image.
src
- Source image with CV_8UC1 type.hist
- Destination histogram with one row, 256 columns, and the CV_32SC1 type.stream
- Stream for the asynchronous version.@Namespace(value="cv::cuda") public static void calcHist(@ByVal UMat src, @ByVal UMat hist, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void calcHist(@ByVal UMat src, @ByVal UMat hist)
@Namespace(value="cv::cuda") public static void calcHist(@ByVal GpuMat src, @ByVal GpuMat hist, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void calcHist(@ByVal GpuMat src, @ByVal GpuMat hist)
@Namespace(value="cv::cuda") public static void calcHist(@ByVal Mat src, @ByVal Mat mask, @ByVal Mat hist, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Source image with CV_8UC1 type.hist
- Destination histogram with one row, 256 columns, and the CV_32SC1 type.mask
- A mask image same size as src and of type CV_8UC1.stream
- Stream for the asynchronous version.@Namespace(value="cv::cuda") public static void calcHist(@ByVal Mat src, @ByVal Mat mask, @ByVal Mat hist)
@Namespace(value="cv::cuda") public static void calcHist(@ByVal UMat src, @ByVal UMat mask, @ByVal UMat hist, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void calcHist(@ByVal UMat src, @ByVal UMat mask, @ByVal UMat hist)
@Namespace(value="cv::cuda") public static void calcHist(@ByVal GpuMat src, @ByVal GpuMat mask, @ByVal GpuMat hist, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void calcHist(@ByVal GpuMat src, @ByVal GpuMat mask, @ByVal GpuMat hist)
@Namespace(value="cv::cuda") public static void equalizeHist(@ByVal Mat src, @ByVal Mat dst, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Source image with CV_8UC1 type.dst
- Destination image.stream
- Stream for the asynchronous version.
equalizeHist
@Namespace(value="cv::cuda") public static void equalizeHist(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv::cuda") public static void equalizeHist(@ByVal UMat src, @ByVal UMat dst, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void equalizeHist(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv::cuda") public static void equalizeHist(@ByVal GpuMat src, @ByVal GpuMat dst, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void equalizeHist(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv::cuda") @opencv_core.Ptr public static CudaCLAHE createCLAHE(double clipLimit, @ByVal(nullValue="cv::Size(8, 8)") Size tileGridSize)
clipLimit
- Threshold for contrast limiting.tileGridSize
- Size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.@Namespace(value="cv::cuda") @opencv_core.Ptr public static CudaCLAHE createCLAHE()
@Namespace(value="cv::cuda") public static void evenLevels(@ByVal Mat levels, int nLevels, int lowerLevel, int upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
levels
- Destination array. levels has 1 row, nLevels columns, and the CV_32SC1 type.nLevels
- Number of computed levels. nLevels must be at least 2.lowerLevel
- Lower boundary value of the lowest level.upperLevel
- Upper boundary value of the greatest level.stream
- Stream for the asynchronous version.@Namespace(value="cv::cuda") public static void evenLevels(@ByVal Mat levels, int nLevels, int lowerLevel, int upperLevel)
@Namespace(value="cv::cuda") public static void evenLevels(@ByVal UMat levels, int nLevels, int lowerLevel, int upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void evenLevels(@ByVal UMat levels, int nLevels, int lowerLevel, int upperLevel)
@Namespace(value="cv::cuda") public static void evenLevels(@ByVal GpuMat levels, int nLevels, int lowerLevel, int upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void evenLevels(@ByVal GpuMat levels, int nLevels, int lowerLevel, int upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal Mat src, @ByVal Mat hist, int histSize, int lowerLevel, int upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
a four-channel image, all channels are processed separately.hist
- Destination histogram with one row, histSize columns, and the CV_32S type.histSize
- Size of the histogram.lowerLevel
- Lower boundary of lowest-level bin.upperLevel
- Upper boundary of highest-level bin.stream
- Stream for the asynchronous version.@Namespace(value="cv::cuda") public static void histEven(@ByVal Mat src, @ByVal Mat hist, int histSize, int lowerLevel, int upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal UMat src, @ByVal UMat hist, int histSize, int lowerLevel, int upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal UMat src, @ByVal UMat hist, int histSize, int lowerLevel, int upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal GpuMat src, @ByVal GpuMat hist, int histSize, int lowerLevel, int upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal GpuMat src, @ByVal GpuMat hist, int histSize, int lowerLevel, int upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal Mat src, GpuMat hist, IntPointer histSize, IntPointer lowerLevel, IntPointer upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal Mat src, GpuMat hist, IntPointer histSize, IntPointer lowerLevel, IntPointer upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal Mat src, GpuMat hist, IntBuffer histSize, IntBuffer lowerLevel, IntBuffer upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal Mat src, GpuMat hist, IntBuffer histSize, IntBuffer lowerLevel, IntBuffer upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal Mat src, GpuMat hist, int[] histSize, int[] lowerLevel, int[] upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal Mat src, GpuMat hist, int[] histSize, int[] lowerLevel, int[] upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal UMat src, GpuMat hist, IntPointer histSize, IntPointer lowerLevel, IntPointer upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal UMat src, GpuMat hist, IntPointer histSize, IntPointer lowerLevel, IntPointer upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal UMat src, GpuMat hist, IntBuffer histSize, IntBuffer lowerLevel, IntBuffer upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal UMat src, GpuMat hist, IntBuffer histSize, IntBuffer lowerLevel, IntBuffer upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal UMat src, GpuMat hist, int[] histSize, int[] lowerLevel, int[] upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal UMat src, GpuMat hist, int[] histSize, int[] lowerLevel, int[] upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal GpuMat src, GpuMat hist, IntPointer histSize, IntPointer lowerLevel, IntPointer upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal GpuMat src, GpuMat hist, IntPointer histSize, IntPointer lowerLevel, IntPointer upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal GpuMat src, GpuMat hist, IntBuffer histSize, IntBuffer lowerLevel, IntBuffer upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal GpuMat src, GpuMat hist, IntBuffer histSize, IntBuffer lowerLevel, IntBuffer upperLevel)
@Namespace(value="cv::cuda") public static void histEven(@ByVal GpuMat src, GpuMat hist, int[] histSize, int[] lowerLevel, int[] upperLevel, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histEven(@ByVal GpuMat src, GpuMat hist, int[] histSize, int[] lowerLevel, int[] upperLevel)
@Namespace(value="cv::cuda") public static void histRange(@ByVal Mat src, @ByVal Mat hist, @ByVal Mat levels, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
For a four-channel image, all channels are processed separately.hist
- Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.levels
- Number of levels in the histogram.stream
- Stream for the asynchronous version.@Namespace(value="cv::cuda") public static void histRange(@ByVal Mat src, @ByVal Mat hist, @ByVal Mat levels)
@Namespace(value="cv::cuda") public static void histRange(@ByVal UMat src, @ByVal UMat hist, @ByVal UMat levels, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histRange(@ByVal UMat src, @ByVal UMat hist, @ByVal UMat levels)
@Namespace(value="cv::cuda") public static void histRange(@ByVal GpuMat src, @ByVal GpuMat hist, @ByVal GpuMat levels, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histRange(@ByVal GpuMat src, @ByVal GpuMat hist, @ByVal GpuMat levels)
@Namespace(value="cv::cuda") public static void histRange(@ByVal Mat src, GpuMat hist, @Const GpuMat levels, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histRange(@ByVal Mat src, GpuMat hist, @Const GpuMat levels)
@Namespace(value="cv::cuda") public static void histRange(@ByVal UMat src, GpuMat hist, @Const GpuMat levels, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void histRange(@ByVal UMat src, GpuMat hist, @Const GpuMat levels)
@Namespace(value="cv::cuda") @opencv_core.Ptr public static CannyEdgeDetector createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size, @Cast(value="bool") boolean L2gradient)
low_thresh
- First threshold for the hysteresis procedure.high_thresh
- Second threshold for the hysteresis procedure.apperture_size
- Aperture size for the Sobel operator.L2gradient
- Flag indicating whether a more accurate L_2
norm
=\sqrt{(dI/dx)^2 + (dI/dy)^2}
should be used to compute the image gradient magnitude (
L2gradient=true ), or a faster default L_1
norm =|dI/dx|+|dI/dy|
is enough ( L2gradient=false
).@Namespace(value="cv::cuda") @opencv_core.Ptr public static CannyEdgeDetector createCannyEdgeDetector(double low_thresh, double high_thresh)
@Namespace(value="cv::cuda") @opencv_core.Ptr public static HoughLinesDetector createHoughLinesDetector(float rho, float theta, int threshold, @Cast(value="bool") boolean doSort, int maxLines)
rho
- Distance resolution of the accumulator in pixels.theta
- Angle resolution of the accumulator in radians.threshold
- Accumulator threshold parameter. Only those lines are returned that get enough
votes ( >\texttt{threshold}
).doSort
- Performs lines sort by votes.maxLines
- Maximum number of output lines.@Namespace(value="cv::cuda") @opencv_core.Ptr public static HoughLinesDetector createHoughLinesDetector(float rho, float theta, int threshold)
@Namespace(value="cv::cuda") @opencv_core.Ptr public static HoughSegmentDetector createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines, int threshold)
rho
- Distance resolution of the accumulator in pixels.theta
- Angle resolution of the accumulator in radians.minLineLength
- Minimum line length. Line segments shorter than that are rejected.maxLineGap
- Maximum allowed gap between points on the same line to link them.maxLines
- Maximum number of output lines.threshold
- %Accumulator threshold parameter. Only those lines are returned that get enough
votes ( >\texttt{threshold}
).@Namespace(value="cv::cuda") @opencv_core.Ptr public static HoughSegmentDetector createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap)
@Namespace(value="cv::cuda") @opencv_core.Ptr public static HoughCirclesDetector createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
dp
- Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
half as big width and height.minDist
- Minimum distance between the centers of the detected circles. If the parameter is
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
too large, some circles may be missed.cannyThreshold
- The higher threshold of the two passed to Canny edge detector (the lower one
is twice smaller).votesThreshold
- The accumulator threshold for the circle centers at the detection stage. The
smaller it is, the more false circles may be detected.minRadius
- Minimum circle radius.maxRadius
- Maximum circle radius.maxCircles
- Maximum number of output circles.@Namespace(value="cv::cuda") @opencv_core.Ptr public static HoughCirclesDetector createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius)
@Namespace(value="cv::cuda") @opencv_core.Ptr public static GeneralizedHoughBallard createGeneralizedHoughBallard()
@Namespace(value="cv::cuda") @opencv_core.Ptr public static GeneralizedHoughGuil createGeneralizedHoughGuil()
@Namespace(value="cv::cuda") @opencv_core.Ptr public static CornernessCriteria createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType)
srcType
- Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.blockSize
- Neighborhood size.ksize
- Aperture parameter for the Sobel operator.k
- Harris detector free parameter.borderType
- Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.
cornerHarris
@Namespace(value="cv::cuda") @opencv_core.Ptr public static CornernessCriteria createHarrisCorner(int srcType, int blockSize, int ksize, double k)
@Namespace(value="cv::cuda") @opencv_core.Ptr public static CornernessCriteria createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType)
srcType
- Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.blockSize
- Neighborhood size.ksize
- Aperture parameter for the Sobel operator.borderType
- Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.
cornerMinEigenVal
@Namespace(value="cv::cuda") @opencv_core.Ptr public static CornernessCriteria createMinEigenValCorner(int srcType, int blockSize, int ksize)
@Namespace(value="cv::cuda") @opencv_core.Ptr public static CornersDetector createGoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance, int blockSize, @Cast(value="bool") boolean useHarrisDetector, double harrisK)
srcType
- Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.maxCorners
- Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned.qualityLevel
- Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.minDistance
- Minimum possible Euclidean distance between the returned corners.blockSize
- Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .useHarrisDetector
- Parameter indicating whether to use a Harris detector (see cornerHarris)
or cornerMinEigenVal.harrisK
- Free parameter of the Harris detector.@Namespace(value="cv::cuda") @opencv_core.Ptr public static CornersDetector createGoodFeaturesToTrackDetector(int srcType)
@Namespace(value="cv::cuda") public static void meanShiftFiltering(@ByVal Mat src, @ByVal Mat dst, int sp, int sr, @ByVal(nullValue="cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 5, 1)") TermCriteria criteria, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
///////////////////////////// Mean Shift //////////////////////////////
/** \brief Performs mean-shift filtering for each point of the source image.
src
- Source image. Only CV_8UC4 images are supported for now.dst
- Destination image containing the color of mapped points. It has the same size and type
as src .sp
- Spatial window radius.sr
- Color window radius.criteria
- Termination criteria. See TermCriteria.stream
- Stream for the asynchronous version.
It maps each point of the source image into another point. As a result, you have a new color and new position of each point.
@Namespace(value="cv::cuda") public static void meanShiftFiltering(@ByVal Mat src, @ByVal Mat dst, int sp, int sr)
@Namespace(value="cv::cuda") public static void meanShiftFiltering(@ByVal UMat src, @ByVal UMat dst, int sp, int sr, @ByVal(nullValue="cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 5, 1)") TermCriteria criteria, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void meanShiftFiltering(@ByVal UMat src, @ByVal UMat dst, int sp, int sr)
@Namespace(value="cv::cuda") public static void meanShiftFiltering(@ByVal GpuMat src, @ByVal GpuMat dst, int sp, int sr, @ByVal(nullValue="cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 5, 1)") TermCriteria criteria, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void meanShiftFiltering(@ByVal GpuMat src, @ByVal GpuMat dst, int sp, int sr)
@Namespace(value="cv::cuda") public static void meanShiftProc(@ByVal Mat src, @ByVal Mat dstr, @ByVal Mat dstsp, int sp, int sr, @ByVal(nullValue="cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 5, 1)") TermCriteria criteria, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Source image. Only CV_8UC4 images are supported for now.dstr
- Destination image containing the color of mapped points. The size and type is the same
as src .dstsp
- Destination image containing the position of mapped points. The size is the same as
src size. The type is CV_16SC2 .sp
- Spatial window radius.sr
- Color window radius.criteria
- Termination criteria. See TermCriteria.stream
- Stream for the asynchronous version.
cuda::meanShiftFiltering
@Namespace(value="cv::cuda") public static void meanShiftProc(@ByVal Mat src, @ByVal Mat dstr, @ByVal Mat dstsp, int sp, int sr)
@Namespace(value="cv::cuda") public static void meanShiftProc(@ByVal UMat src, @ByVal UMat dstr, @ByVal UMat dstsp, int sp, int sr, @ByVal(nullValue="cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 5, 1)") TermCriteria criteria, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void meanShiftProc(@ByVal UMat src, @ByVal UMat dstr, @ByVal UMat dstsp, int sp, int sr)
@Namespace(value="cv::cuda") public static void meanShiftProc(@ByVal GpuMat src, @ByVal GpuMat dstr, @ByVal GpuMat dstsp, int sp, int sr, @ByVal(nullValue="cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 5, 1)") TermCriteria criteria, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void meanShiftProc(@ByVal GpuMat src, @ByVal GpuMat dstr, @ByVal GpuMat dstsp, int sp, int sr)
@Namespace(value="cv::cuda") public static void meanShiftSegmentation(@ByVal Mat src, @ByVal Mat dst, int sp, int sr, int minsize, @ByVal(nullValue="cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 5, 1)") TermCriteria criteria, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Source image. Only CV_8UC4 images are supported for now.dst
- Segmented image with the same size and type as src (host or gpu memory).sp
- Spatial window radius.sr
- Color window radius.minsize
- Minimum segment size. Smaller segments are merged.criteria
- Termination criteria. See TermCriteria.stream
- Stream for the asynchronous version.@Namespace(value="cv::cuda") public static void meanShiftSegmentation(@ByVal Mat src, @ByVal Mat dst, int sp, int sr, int minsize)
@Namespace(value="cv::cuda") public static void meanShiftSegmentation(@ByVal UMat src, @ByVal UMat dst, int sp, int sr, int minsize, @ByVal(nullValue="cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 5, 1)") TermCriteria criteria, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void meanShiftSegmentation(@ByVal UMat src, @ByVal UMat dst, int sp, int sr, int minsize)
@Namespace(value="cv::cuda") public static void meanShiftSegmentation(@ByVal GpuMat src, @ByVal GpuMat dst, int sp, int sr, int minsize, @ByVal(nullValue="cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 5, 1)") TermCriteria criteria, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void meanShiftSegmentation(@ByVal GpuMat src, @ByVal GpuMat dst, int sp, int sr, int minsize)
@Namespace(value="cv::cuda") @opencv_core.Ptr public static TemplateMatching createTemplateMatching(int srcType, int method, @ByVal(nullValue="cv::Size()") Size user_block_size)
srcType
- Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported
for now.method
- Specifies the way to compare the template with the image.user_block_size
- You can use field user_block_size to set specific block size. If you
leave its default value Size(0,0) then automatic estimation of block size will be used (which is
optimized for speed). By varying user_block_size you can reduce memory requirements at the cost
of speed.
The following methods are supported for the CV_8U depth images for now:
- CV_TM_SQDIFF - CV_TM_SQDIFF_NORMED - CV_TM_CCORR - CV_TM_CCORR_NORMED - CV_TM_CCOEFF - CV_TM_CCOEFF_NORMED
The following methods are supported for the CV_32F images for now:
- CV_TM_SQDIFF - CV_TM_CCORR
matchTemplate
@Namespace(value="cv::cuda") @opencv_core.Ptr public static TemplateMatching createTemplateMatching(int srcType, int method)
@Namespace(value="cv::cuda") public static void bilateralFilter(@ByVal Mat src, @ByVal Mat dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Source image. Supports only (channels != 2 && depth() != CV_8S && depth() != CV_32S
&& depth() != CV_64F).dst
- Destination imagwe.kernel_size
- Kernel window size.sigma_color
- Filter sigma in the color space.sigma_spatial
- Filter sigma in the coordinate space.borderMode
- Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.stream
- Stream for the asynchronous version.
bilateralFilter
@Namespace(value="cv::cuda") public static void bilateralFilter(@ByVal Mat src, @ByVal Mat dst, int kernel_size, float sigma_color, float sigma_spatial)
@Namespace(value="cv::cuda") public static void bilateralFilter(@ByVal UMat src, @ByVal UMat dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void bilateralFilter(@ByVal UMat src, @ByVal UMat dst, int kernel_size, float sigma_color, float sigma_spatial)
@Namespace(value="cv::cuda") public static void bilateralFilter(@ByVal GpuMat src, @ByVal GpuMat dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void bilateralFilter(@ByVal GpuMat src, @ByVal GpuMat dst, int kernel_size, float sigma_color, float sigma_spatial)
@Namespace(value="cv::cuda") public static void blendLinear(@ByVal Mat img1, @ByVal Mat img2, @ByVal Mat weights1, @ByVal Mat weights2, @ByVal Mat result, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
img1
- First image. Supports only CV_8U and CV_32F depth.img2
- Second image. Must have the same size and the same type as img1 .weights1
- Weights for first image. Must have tha same size as img1 . Supports only CV_32F
type.weights2
- Weights for second image. Must have tha same size as img2 . Supports only CV_32F
type.result
- Destination image.stream
- Stream for the asynchronous version.@Namespace(value="cv::cuda") public static void blendLinear(@ByVal Mat img1, @ByVal Mat img2, @ByVal Mat weights1, @ByVal Mat weights2, @ByVal Mat result)
@Namespace(value="cv::cuda") public static void blendLinear(@ByVal UMat img1, @ByVal UMat img2, @ByVal UMat weights1, @ByVal UMat weights2, @ByVal UMat result, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void blendLinear(@ByVal UMat img1, @ByVal UMat img2, @ByVal UMat weights1, @ByVal UMat weights2, @ByVal UMat result)
@Namespace(value="cv::cuda") public static void blendLinear(@ByVal GpuMat img1, @ByVal GpuMat img2, @ByVal GpuMat weights1, @ByVal GpuMat weights2, @ByVal GpuMat result, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void blendLinear(@ByVal GpuMat img1, @ByVal GpuMat img2, @ByVal GpuMat weights1, @ByVal GpuMat weights2, @ByVal GpuMat result)
@Namespace(value="cv::cuda") @Name(value="connectedComponents") public static void connectedComponentsWithAlgorithm(@ByVal Mat image, @ByVal Mat labels, int connectivity, int ltype, @Cast(value="cv::cuda::ConnectedComponentsAlgorithmsTypes") int ccltype)
The function takes as input a binary image and performs Connected Components Labeling. The output is an image where each Connected Component is assigned a unique label (integer value). ltype specifies the output label image type, an important consideration based on the total number of labels or alternatively the total number of pixels in the source image. ccltype specifies the connected components labeling algorithm to use, currently BKE \cite Allegretti2019 is supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that labels in the output are not required to be sequential.
image
- The 8-bit single-channel image to be labeled.labels
- Destination labeled image.connectivity
- Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.ltype
- Output image label type. Currently CV_32S is supported.ccltype
- Connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
\note A sample program demonstrating Connected Components Labeling in CUDA can be found at\n opencv_contrib_source_code/modules/cudaimgproc/samples/connected_components.cpp
@Namespace(value="cv::cuda") @Name(value="connectedComponents") public static void connectedComponentsWithAlgorithm(@ByVal UMat image, @ByVal UMat labels, int connectivity, int ltype, @Cast(value="cv::cuda::ConnectedComponentsAlgorithmsTypes") int ccltype)
@Namespace(value="cv::cuda") @Name(value="connectedComponents") public static void connectedComponentsWithAlgorithm(@ByVal GpuMat image, @ByVal GpuMat labels, int connectivity, int ltype, @Cast(value="cv::cuda::ConnectedComponentsAlgorithmsTypes") int ccltype)
@Namespace(value="cv::cuda") public static void connectedComponents(@ByVal Mat image, @ByVal Mat labels, int connectivity, int ltype)
image
- The 8-bit single-channel image to be labeled.labels
- Destination labeled image.connectivity
- Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.ltype
- Output image label type. Currently CV_32S is supported.@Namespace(value="cv::cuda") public static void connectedComponents(@ByVal Mat image, @ByVal Mat labels)
@Namespace(value="cv::cuda") public static void connectedComponents(@ByVal UMat image, @ByVal UMat labels, int connectivity, int ltype)
@Namespace(value="cv::cuda") public static void connectedComponents(@ByVal UMat image, @ByVal UMat labels)
@Namespace(value="cv::cuda") public static void connectedComponents(@ByVal GpuMat image, @ByVal GpuMat labels, int connectivity, int ltype)
@Namespace(value="cv::cuda") public static void connectedComponents(@ByVal GpuMat image, @ByVal GpuMat labels)
@Namespace(value="cv::cuda") public static int numMoments(@Cast(value="const cv::cuda::MomentsOrder") int order)
order
- Order of largest moments to calculate with lower order moments requiring less computation.cuda::spatialMoments, cuda::moments, cuda::MomentsOrder
@Namespace(value="cv::cuda") @ByVal public static Moments convertSpatialMoments(@ByVal Mat spatialMoments, @Cast(value="const cv::cuda::MomentsOrder") int order, int momentsType)
spatialMoments
- Spatial moments returned from cuda::spatialMoments.order
- Order used when calculating image moments with cuda::spatialMoments.momentsType
- Precision used when calculating image moments with cuda::spatialMoments.
cuda::spatialMoments, cuda::moments, cuda::convertSpatialMoments, cuda::numMoments, cuda::MomentsOrder
@Namespace(value="cv::cuda") public static void spatialMoments(@ByVal Mat src, @ByVal Mat moments, @Cast(value="const bool") boolean binaryImage, @Cast(value="const cv::cuda::MomentsOrder") int order, int momentsType, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
Asynchronous version of cuda::moments() which only calculates the spatial (not centralized or normalized) moments, up to the 3rd order, of a rasterized shape. Each moment is returned as a column entry in the 1D \a moments array.
src
- Raster image (single-channel 2D array).moments
- [out] 1D array with each column entry containing a spatial image moment.binaryImage
- If it is true, all non-zero image pixels are treated as 1's.order
- Order of largest moments to calculate with lower order moments requiring less computation.momentsType
- Precision to use when calculating moments. Available types are \ref CV_32F and \ref CV_64F with the performance of \ref CV_32F an order of magnitude greater than \ref CV_64F. If the image is small the accuracy from \ref CV_32F can be equal or very close to \ref CV_64F.stream
- Stream for the asynchronous version.
\note For maximum performance pre-allocate a 1D GpuMat for \a moments of the correct type and size large enough to store the all the image moments of up to the desired \a order. e.g. With \a order === MomentsOrder::SECOND_ORDER_MOMENTS and \a momentsType == \ref CV_32F \a moments can be allocated as
GpuMat momentsDevice(1,numMoments(MomentsOrder::SECOND_ORDER_MOMENTS),CV_32F)
The central and normalized moments can easily be calculated on the host by downloading the \a moments array and using the cuda::convertSpatialMoments helper function. e.g.
HostMem spatialMomentsHostMem(1, numMoments(MomentsOrder::SECOND_ORDER_MOMENTS), CV_32F);
spatialMomentsDevice.download(spatialMomentsHostMem, stream);
stream.waitForCompletion();
Mat spatialMoments = spatialMomentsHostMem.createMatHeader();
cv::Moments cvMoments = convertSpatialMoments<float>(spatialMoments, order);
see the \a CUDA_TEST_P(Moments, Async) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
cuda::moments, cuda::convertSpatialMoments, cuda::numMoments, cuda::MomentsOrder
@Namespace(value="cv::cuda") public static void spatialMoments(@ByVal Mat src, @ByVal Mat moments)
@Namespace(value="cv::cuda") public static void spatialMoments(@ByVal UMat src, @ByVal UMat moments, @Cast(value="const bool") boolean binaryImage, @Cast(value="const cv::cuda::MomentsOrder") int order, int momentsType, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void spatialMoments(@ByVal UMat src, @ByVal UMat moments)
@Namespace(value="cv::cuda") public static void spatialMoments(@ByVal GpuMat src, @ByVal GpuMat moments, @Cast(value="const bool") boolean binaryImage, @Cast(value="const cv::cuda::MomentsOrder") int order, int momentsType, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void spatialMoments(@ByVal GpuMat src, @ByVal GpuMat moments)
@Namespace(value="cv::cuda") @ByVal public static Moments moments(@ByVal Mat src, @Cast(value="const bool") boolean binaryImage, @Cast(value="const cv::cuda::MomentsOrder") int order, int momentsType)
The function computes moments, up to the 3rd order, of a rasterized shape. The results are returned in the structure cv::Moments.
src
- Raster image (single-channel 2D array).binaryImage
- If it is true, all non-zero image pixels are treated as 1's.order
- Order of largest moments to calculate with lower order moments requiring less computation.momentsType
- Precision to use when calculating moments. Available types are \ref CV_32F and \ref CV_64F with the performance of \ref CV_32F an order of magnitude greater than \ref CV_64F. If the image is small the accuracy from \ref CV_32F can be equal or very close to \ref CV_64F.
\note For maximum performance use the asynchronous version cuda::spatialMoments() as this version interally allocates and deallocates both GpuMat and HostMem to respectively perform the calculation on the device and download the result to the host. The costly HostMem allocation cannot be avoided however the GpuMat device allocation can be by using BufferPool, e.g.
setBufferPoolUsage(true);
setBufferPoolConfig(getDevice(), numMoments(order) * ((momentsType == CV_64F) ? sizeof(double) : sizeof(float)), 1);
see the \a CUDA_TEST_P(Moments, Accuracy) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.cuda::spatialMoments, cuda::convertSpatialMoments, cuda::numMoments, cuda::MomentsOrder
@Namespace(value="cv::cuda") @ByVal public static Moments moments(@ByVal UMat src, @Cast(value="const bool") boolean binaryImage, @Cast(value="const cv::cuda::MomentsOrder") int order, int momentsType)
@Namespace(value="cv::cuda") @ByVal public static Moments moments(@ByVal GpuMat src, @Cast(value="const bool") boolean binaryImage, @Cast(value="const cv::cuda::MomentsOrder") int order, int momentsType)
Copyright © 2024. All rights reserved.