public class opencv_ximgproc extends opencv_ximgproc
Modifier and Type | Field and Description |
---|---|
static int |
AM_FILTER
enum cv::ximgproc::EdgeAwareFiltersList
|
static int |
ARO_0_45
enum cv::ximgproc::AngleRangeOption
|
static int |
ARO_315_0
enum cv::ximgproc::AngleRangeOption
|
static int |
ARO_315_135
enum cv::ximgproc::AngleRangeOption
|
static int |
ARO_315_45
enum cv::ximgproc::AngleRangeOption
|
static int |
ARO_45_135
enum cv::ximgproc::AngleRangeOption
|
static int |
ARO_45_90
enum cv::ximgproc::AngleRangeOption
|
static int |
ARO_90_135
enum cv::ximgproc::AngleRangeOption
|
static int |
ARO_CTR_HOR
enum cv::ximgproc::AngleRangeOption
|
static int |
ARO_CTR_VER
enum cv::ximgproc::AngleRangeOption
|
static int |
BINARIZATION_NIBLACK
enum cv::ximgproc::LocalBinarizationMethods
|
static int |
BINARIZATION_NICK
enum cv::ximgproc::LocalBinarizationMethods
|
static int |
BINARIZATION_SAUVOLA
enum cv::ximgproc::LocalBinarizationMethods
|
static int |
BINARIZATION_WOLF
enum cv::ximgproc::LocalBinarizationMethods
|
static int |
DTF_IC
enum cv::ximgproc::EdgeAwareFiltersList
|
static int |
DTF_NC
enum cv::ximgproc::EdgeAwareFiltersList
|
static int |
DTF_RF
enum cv::ximgproc::EdgeAwareFiltersList
|
static int |
FHT_ADD
enum cv::ximgproc::HoughOp
|
static int |
FHT_AVE
enum cv::ximgproc::HoughOp
|
static int |
FHT_MAX
enum cv::ximgproc::HoughOp
|
static int |
FHT_MIN
enum cv::ximgproc::HoughOp
|
static int |
GUIDED_FILTER
enum cv::ximgproc::EdgeAwareFiltersList
|
static int |
HDO_DESKEW
enum cv::ximgproc::HoughDeskewOption
|
static int |
HDO_RAW
enum cv::ximgproc::HoughDeskewOption
|
static int |
MSLIC
enum cv::ximgproc::SLICType
|
static int |
RO_IGNORE_BORDERS
enum cv::ximgproc::RulesOption
|
static int |
RO_STRICT
enum cv::ximgproc::RulesOption
|
static int |
SLIC
enum cv::ximgproc::SLICType
|
static int |
SLICO
enum cv::ximgproc::SLICType
|
static int |
THINNING_GUOHALL
enum cv::ximgproc::ThinningTypes
|
static int |
THINNING_ZHANGSUEN
enum cv::ximgproc::ThinningTypes
|
static int |
WMF_COS
enum cv::ximgproc::WMFWeightType
|
static int |
WMF_EXP
enum cv::ximgproc::WMFWeightType
|
static int |
WMF_IV1
enum cv::ximgproc::WMFWeightType
|
static int |
WMF_IV2
enum cv::ximgproc::WMFWeightType
|
static int |
WMF_JAC
enum cv::ximgproc::WMFWeightType
|
static int |
WMF_OFF
enum cv::ximgproc::WMFWeightType
|
Constructor and Description |
---|
opencv_ximgproc() |
Modifier and Type | Method and Description |
---|---|
static void |
amFilter(GpuMat joint,
GpuMat src,
GpuMat dst,
double sigma_s,
double sigma_r) |
static void |
amFilter(GpuMat joint,
GpuMat src,
GpuMat dst,
double sigma_s,
double sigma_r,
boolean adjust_outliers) |
static void |
amFilter(Mat joint,
Mat src,
Mat dst,
double sigma_s,
double sigma_r) |
static void |
amFilter(Mat joint,
Mat src,
Mat dst,
double sigma_s,
double sigma_r,
boolean adjust_outliers)
\brief Simple one-line Adaptive Manifold Filter call.
|
static void |
amFilter(UMat joint,
UMat src,
UMat dst,
double sigma_s,
double sigma_r) |
static void |
amFilter(UMat joint,
UMat src,
UMat dst,
double sigma_s,
double sigma_r,
boolean adjust_outliers) |
static void |
anisotropicDiffusion(GpuMat src,
GpuMat dst,
float alpha,
float K,
int niters) |
static void |
anisotropicDiffusion(Mat src,
Mat dst,
float alpha,
float K,
int niters)
\brief Performs anisotropic diffusion on an image.
|
static void |
anisotropicDiffusion(UMat src,
UMat dst,
float alpha,
float K,
int niters) |
static void |
bilateralTextureFilter(GpuMat src,
GpuMat dst) |
static void |
bilateralTextureFilter(GpuMat src,
GpuMat dst,
int fr,
int numIter,
double sigmaAlpha,
double sigmaAvg) |
static void |
bilateralTextureFilter(Mat src,
Mat dst) |
static void |
bilateralTextureFilter(Mat src,
Mat dst,
int fr,
int numIter,
double sigmaAlpha,
double sigmaAvg)
\brief Applies the bilateral texture filter to an image.
|
static void |
bilateralTextureFilter(UMat src,
UMat dst) |
static void |
bilateralTextureFilter(UMat src,
UMat dst,
int fr,
int numIter,
double sigmaAlpha,
double sigmaAvg) |
static void |
BrightEdges(Mat _original,
Mat _edgeview) |
static void |
BrightEdges(Mat _original,
Mat _edgeview,
int contrast,
int shortrange,
int longrange)
\}
|
static void |
colorMatchTemplate(GpuMat img,
GpuMat templ,
GpuMat result) |
static void |
colorMatchTemplate(Mat img,
Mat templ,
Mat result)
\brief Compares a color template against overlapped color image regions.
|
static void |
colorMatchTemplate(UMat img,
UMat templ,
UMat result) |
static double |
computeBadPixelPercent(GpuMat GT,
GpuMat src,
Rect ROI) |
static double |
computeBadPixelPercent(GpuMat GT,
GpuMat src,
Rect ROI,
int thresh) |
static double |
computeBadPixelPercent(Mat GT,
Mat src,
Rect ROI) |
static double |
computeBadPixelPercent(Mat GT,
Mat src,
Rect ROI,
int thresh)
\brief Function for computing the percent of "bad" pixels in the disparity map
(pixels where error is higher than a specified threshold)
|
static double |
computeBadPixelPercent(UMat GT,
UMat src,
Rect ROI) |
static double |
computeBadPixelPercent(UMat GT,
UMat src,
Rect ROI,
int thresh) |
static double |
computeMSE(GpuMat GT,
GpuMat src,
Rect ROI) |
static double |
computeMSE(Mat GT,
Mat src,
Rect ROI)
\brief Function for computing mean square error for disparity maps
|
static double |
computeMSE(UMat GT,
UMat src,
Rect ROI) |
static void |
contourSampling(GpuMat src,
GpuMat out,
int nbElt) |
static void |
contourSampling(Mat src,
Mat out,
int nbElt)
\brief Contour sampling .
|
static void |
contourSampling(UMat src,
UMat out,
int nbElt) |
static void |
covarianceEstimation(GpuMat src,
GpuMat dst,
int windowRows,
int windowCols) |
static void |
covarianceEstimation(Mat src,
Mat dst,
int windowRows,
int windowCols)
\brief Computes the estimated covariance matrix of an image using the sliding
window forumlation.
|
static void |
covarianceEstimation(UMat src,
UMat dst,
int windowRows,
int windowCols) |
static AdaptiveManifoldFilter |
createAMFilter(double sigma_s,
double sigma_r) |
static AdaptiveManifoldFilter |
createAMFilter(double sigma_s,
double sigma_r,
boolean adjust_outliers)
\brief Factory method, create instance of AdaptiveManifoldFilter and produce some initialization routines.
|
static ContourFitting |
createContourFitting() |
static ContourFitting |
createContourFitting(int ctr,
int fd)
\brief create ContourFitting algorithm object
|
static DisparityWLSFilter |
createDisparityWLSFilter(StereoMatcher matcher_left)
\brief Convenience factory method that creates an instance of DisparityWLSFilter and sets up all the relevant
filter parameters automatically based on the matcher instance.
|
static DisparityWLSFilter |
createDisparityWLSFilterGeneric(boolean use_confidence)
\brief More generic factory method, create instance of DisparityWLSFilter and execute basic
initialization routines.
|
static DTFilter |
createDTFilter(GpuMat guide,
double sigmaSpatial,
double sigmaColor) |
static DTFilter |
createDTFilter(GpuMat guide,
double sigmaSpatial,
double sigmaColor,
int mode,
int numIters) |
static DTFilter |
createDTFilter(Mat guide,
double sigmaSpatial,
double sigmaColor) |
static DTFilter |
createDTFilter(Mat guide,
double sigmaSpatial,
double sigmaColor,
int mode,
int numIters)
\brief Factory method, create instance of DTFilter and produce initialization routines.
|
static DTFilter |
createDTFilter(UMat guide,
double sigmaSpatial,
double sigmaColor) |
static DTFilter |
createDTFilter(UMat guide,
double sigmaSpatial,
double sigmaColor,
int mode,
int numIters) |
static EdgeAwareInterpolator |
createEdgeAwareInterpolator()
\brief Factory method that creates an instance of the
EdgeAwareInterpolator.
|
static EdgeBoxes |
createEdgeBoxes() |
static EdgeBoxes |
createEdgeBoxes(float alpha,
float beta,
float eta,
float minScore,
int maxBoxes,
float edgeMinMag,
float edgeMergeThr,
float clusterMinMag,
float maxAspectRatio,
float minBoxArea,
float gamma,
float kappa)
\brief Creates a Edgeboxes
|
static FastBilateralSolverFilter |
createFastBilateralSolverFilter(GpuMat guide,
double sigma_spatial,
double sigma_luma,
double sigma_chroma) |
static FastBilateralSolverFilter |
createFastBilateralSolverFilter(GpuMat guide,
double sigma_spatial,
double sigma_luma,
double sigma_chroma,
double lambda,
int num_iter,
double max_tol) |
static FastBilateralSolverFilter |
createFastBilateralSolverFilter(Mat guide,
double sigma_spatial,
double sigma_luma,
double sigma_chroma) |
static FastBilateralSolverFilter |
createFastBilateralSolverFilter(Mat guide,
double sigma_spatial,
double sigma_luma,
double sigma_chroma,
double lambda,
int num_iter,
double max_tol)
\brief Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
|
static FastBilateralSolverFilter |
createFastBilateralSolverFilter(UMat guide,
double sigma_spatial,
double sigma_luma,
double sigma_chroma) |
static FastBilateralSolverFilter |
createFastBilateralSolverFilter(UMat guide,
double sigma_spatial,
double sigma_luma,
double sigma_chroma,
double lambda,
int num_iter,
double max_tol) |
static FastGlobalSmootherFilter |
createFastGlobalSmootherFilter(GpuMat guide,
double lambda,
double sigma_color) |
static FastGlobalSmootherFilter |
createFastGlobalSmootherFilter(GpuMat guide,
double lambda,
double sigma_color,
double lambda_attenuation,
int num_iter) |
static FastGlobalSmootherFilter |
createFastGlobalSmootherFilter(Mat guide,
double lambda,
double sigma_color) |
static FastGlobalSmootherFilter |
createFastGlobalSmootherFilter(Mat guide,
double lambda,
double sigma_color,
double lambda_attenuation,
int num_iter)
\brief Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
|
static FastGlobalSmootherFilter |
createFastGlobalSmootherFilter(UMat guide,
double lambda,
double sigma_color) |
static FastGlobalSmootherFilter |
createFastGlobalSmootherFilter(UMat guide,
double lambda,
double sigma_color,
double lambda_attenuation,
int num_iter) |
static FastLineDetector |
createFastLineDetector() |
static FastLineDetector |
createFastLineDetector(int length_threshold,
float distance_threshold,
double canny_th1,
double canny_th2,
int canny_aperture_size,
boolean do_merge)
\brief Creates a smart pointer to a FastLineDetector object and initializes it
|
static GraphSegmentation |
createGraphSegmentation() |
static GraphSegmentation |
createGraphSegmentation(double sigma,
float k,
int min_size)
\brief Creates a graph based segmentor
|
static GuidedFilter |
createGuidedFilter(GpuMat guide,
int radius,
double eps) |
static GuidedFilter |
createGuidedFilter(GpuMat guide,
int radius,
double eps,
double scale) |
static GuidedFilter |
createGuidedFilter(Mat guide,
int radius,
double eps) |
static GuidedFilter |
createGuidedFilter(Mat guide,
int radius,
double eps,
double scale)
\brief Factory method, create instance of GuidedFilter and produce initialization routines.
|
static GuidedFilter |
createGuidedFilter(UMat guide,
int radius,
double eps) |
static GuidedFilter |
createGuidedFilter(UMat guide,
int radius,
double eps,
double scale) |
static void |
createQuaternionImage(GpuMat img,
GpuMat qimg) |
static void |
createQuaternionImage(Mat img,
Mat qimg)
\addtogroup ximgproc_filters
\{
|
static void |
createQuaternionImage(UMat img,
UMat qimg) |
static RFFeatureGetter |
createRFFeatureGetter()
\file
\date Jun 17, 2014
|
static RICInterpolator |
createRICInterpolator()
\brief Factory method that creates an instance of the
RICInterpolator.
|
static StereoMatcher |
createRightMatcher(StereoMatcher matcher_left)
\brief Convenience method to set up the matcher for computing the right-view disparity map
that is required in case of filtering with confidence.
|
static void |
createRLEImage(Point3iVector runs,
GpuMat res) |
static void |
createRLEImage(Point3iVector runs,
GpuMat res,
Size size) |
static void |
createRLEImage(Point3iVector runs,
Mat res) |
static void |
createRLEImage(Point3iVector runs,
Mat res,
Size size)
\brief Creates a run-length encoded image from a vector of runs (column begin, column end, row)
|
static void |
createRLEImage(Point3iVector runs,
UMat res) |
static void |
createRLEImage(Point3iVector runs,
UMat res,
Size size) |
static SelectiveSearchSegmentation |
createSelectiveSearchSegmentation()
\brief Create a new SelectiveSearchSegmentation class.
|
static SelectiveSearchSegmentationStrategyColor |
createSelectiveSearchSegmentationStrategyColor()
\brief Create a new color-based strategy
|
static SelectiveSearchSegmentationStrategyFill |
createSelectiveSearchSegmentationStrategyFill()
\brief Create a new fill-based strategy
|
static SelectiveSearchSegmentationStrategyMultiple |
createSelectiveSearchSegmentationStrategyMultiple()
\brief Create a new multiple strategy
|
static SelectiveSearchSegmentationStrategyMultiple |
createSelectiveSearchSegmentationStrategyMultiple(SelectiveSearchSegmentationStrategy s1)
\brief Create a new multiple strategy and set one subtrategy
|
static SelectiveSearchSegmentationStrategyMultiple |
createSelectiveSearchSegmentationStrategyMultiple(SelectiveSearchSegmentationStrategy s1,
SelectiveSearchSegmentationStrategy s2)
\brief Create a new multiple strategy and set two subtrategies, with equal weights
|
static SelectiveSearchSegmentationStrategyMultiple |
createSelectiveSearchSegmentationStrategyMultiple(SelectiveSearchSegmentationStrategy s1,
SelectiveSearchSegmentationStrategy s2,
SelectiveSearchSegmentationStrategy s3)
\brief Create a new multiple strategy and set three subtrategies, with equal weights
|
static SelectiveSearchSegmentationStrategyMultiple |
createSelectiveSearchSegmentationStrategyMultiple(SelectiveSearchSegmentationStrategy s1,
SelectiveSearchSegmentationStrategy s2,
SelectiveSearchSegmentationStrategy s3,
SelectiveSearchSegmentationStrategy s4)
\brief Create a new multiple strategy and set four subtrategies, with equal weights
|
static SelectiveSearchSegmentationStrategySize |
createSelectiveSearchSegmentationStrategySize()
\brief Create a new size-based strategy
|
static SelectiveSearchSegmentationStrategyTexture |
createSelectiveSearchSegmentationStrategyTexture()
\brief Create a new size-based strategy
|
static StructuredEdgeDetection |
createStructuredEdgeDetection(BytePointer model) |
static StructuredEdgeDetection |
createStructuredEdgeDetection(BytePointer model,
RFFeatureGetter howToGetFeatures)
The only constructor
|
static StructuredEdgeDetection |
createStructuredEdgeDetection(String model) |
static StructuredEdgeDetection |
createStructuredEdgeDetection(String model,
RFFeatureGetter howToGetFeatures) |
static SuperpixelLSC |
createSuperpixelLSC(GpuMat image) |
static SuperpixelLSC |
createSuperpixelLSC(GpuMat image,
int region_size,
float ratio) |
static SuperpixelLSC |
createSuperpixelLSC(Mat image) |
static SuperpixelLSC |
createSuperpixelLSC(Mat image,
int region_size,
float ratio)
\brief Class implementing the LSC (Linear Spectral Clustering) superpixels
|
static SuperpixelLSC |
createSuperpixelLSC(UMat image) |
static SuperpixelLSC |
createSuperpixelLSC(UMat image,
int region_size,
float ratio) |
static SuperpixelSEEDS |
createSuperpixelSEEDS(int image_width,
int image_height,
int image_channels,
int num_superpixels,
int num_levels) |
static SuperpixelSEEDS |
createSuperpixelSEEDS(int image_width,
int image_height,
int image_channels,
int num_superpixels,
int num_levels,
int prior,
int histogram_bins,
boolean double_step)
\brief Initializes a SuperpixelSEEDS object.
|
static SuperpixelSLIC |
createSuperpixelSLIC(GpuMat image) |
static SuperpixelSLIC |
createSuperpixelSLIC(GpuMat image,
int algorithm,
int region_size,
float ruler) |
static SuperpixelSLIC |
createSuperpixelSLIC(Mat image) |
static SuperpixelSLIC |
createSuperpixelSLIC(Mat image,
int algorithm,
int region_size,
float ruler)
\brief Initialize a SuperpixelSLIC object
|
static SuperpixelSLIC |
createSuperpixelSLIC(UMat image) |
static SuperpixelSLIC |
createSuperpixelSLIC(UMat image,
int algorithm,
int region_size,
float ruler) |
static void |
dilate(GpuMat rlSrc,
GpuMat rlDest,
GpuMat rlKernel) |
static void |
dilate(GpuMat rlSrc,
GpuMat rlDest,
GpuMat rlKernel,
Point anchor) |
static void |
dilate(Mat rlSrc,
Mat rlDest,
Mat rlKernel) |
static void |
dilate(Mat rlSrc,
Mat rlDest,
Mat rlKernel,
Point anchor)
\brief Dilates an run-length encoded binary image by using a specific structuring element.
|
static void |
dilate(UMat rlSrc,
UMat rlDest,
UMat rlKernel) |
static void |
dilate(UMat rlSrc,
UMat rlDest,
UMat rlKernel,
Point anchor) |
static void |
dtFilter(GpuMat guide,
GpuMat src,
GpuMat dst,
double sigmaSpatial,
double sigmaColor) |
static void |
dtFilter(GpuMat guide,
GpuMat src,
GpuMat dst,
double sigmaSpatial,
double sigmaColor,
int mode,
int numIters) |
static void |
dtFilter(Mat guide,
Mat src,
Mat dst,
double sigmaSpatial,
double sigmaColor) |
static void |
dtFilter(Mat guide,
Mat src,
Mat dst,
double sigmaSpatial,
double sigmaColor,
int mode,
int numIters)
\brief Simple one-line Domain Transform filter call.
|
static void |
dtFilter(UMat guide,
UMat src,
UMat dst,
double sigmaSpatial,
double sigmaColor) |
static void |
dtFilter(UMat guide,
UMat src,
UMat dst,
double sigmaSpatial,
double sigmaColor,
int mode,
int numIters) |
static void |
edgePreservingFilter(GpuMat src,
GpuMat dst,
int d,
double threshold) |
static void |
edgePreservingFilter(Mat src,
Mat dst,
int d,
double threshold)
\addtogroup ximgproc
\{
|
static void |
edgePreservingFilter(UMat src,
UMat dst,
int d,
double threshold) |
static void |
erode(GpuMat rlSrc,
GpuMat rlDest,
GpuMat rlKernel) |
static void |
erode(GpuMat rlSrc,
GpuMat rlDest,
GpuMat rlKernel,
boolean bBoundaryOn,
Point anchor) |
static void |
erode(Mat rlSrc,
Mat rlDest,
Mat rlKernel) |
static void |
erode(Mat rlSrc,
Mat rlDest,
Mat rlKernel,
boolean bBoundaryOn,
Point anchor)
\brief Erodes an run-length encoded binary image by using a specific structuring element.
|
static void |
erode(UMat rlSrc,
UMat rlDest,
UMat rlKernel) |
static void |
erode(UMat rlSrc,
UMat rlDest,
UMat rlKernel,
boolean bBoundaryOn,
Point anchor) |
static void |
fastBilateralSolverFilter(GpuMat guide,
GpuMat src,
GpuMat confidence,
GpuMat dst) |
static void |
fastBilateralSolverFilter(GpuMat guide,
GpuMat src,
GpuMat confidence,
GpuMat dst,
double sigma_spatial,
double sigma_luma,
double sigma_chroma,
double lambda,
int num_iter,
double max_tol) |
static void |
fastBilateralSolverFilter(Mat guide,
Mat src,
Mat confidence,
Mat dst) |
static void |
fastBilateralSolverFilter(Mat guide,
Mat src,
Mat confidence,
Mat dst,
double sigma_spatial,
double sigma_luma,
double sigma_chroma,
double lambda,
int num_iter,
double max_tol)
\brief Simple one-line Fast Bilateral Solver filter call.
|
static void |
fastBilateralSolverFilter(UMat guide,
UMat src,
UMat confidence,
UMat dst) |
static void |
fastBilateralSolverFilter(UMat guide,
UMat src,
UMat confidence,
UMat dst,
double sigma_spatial,
double sigma_luma,
double sigma_chroma,
double lambda,
int num_iter,
double max_tol) |
static void |
fastGlobalSmootherFilter(GpuMat guide,
GpuMat src,
GpuMat dst,
double lambda,
double sigma_color) |
static void |
fastGlobalSmootherFilter(GpuMat guide,
GpuMat src,
GpuMat dst,
double lambda,
double sigma_color,
double lambda_attenuation,
int num_iter) |
static void |
fastGlobalSmootherFilter(Mat guide,
Mat src,
Mat dst,
double lambda,
double sigma_color) |
static void |
fastGlobalSmootherFilter(Mat guide,
Mat src,
Mat dst,
double lambda,
double sigma_color,
double lambda_attenuation,
int num_iter)
\brief Simple one-line Fast Global Smoother filter call.
|
static void |
fastGlobalSmootherFilter(UMat guide,
UMat src,
UMat dst,
double lambda,
double sigma_color) |
static void |
fastGlobalSmootherFilter(UMat guide,
UMat src,
UMat dst,
double lambda,
double sigma_color,
double lambda_attenuation,
int num_iter) |
static void |
FastHoughTransform(GpuMat src,
GpuMat dst,
int dstMatDepth) |
static void |
FastHoughTransform(GpuMat src,
GpuMat dst,
int dstMatDepth,
int angleRange,
int op,
int makeSkew) |
static void |
FastHoughTransform(Mat src,
Mat dst,
int dstMatDepth) |
static void |
FastHoughTransform(Mat src,
Mat dst,
int dstMatDepth,
int angleRange,
int op,
int makeSkew)
\brief Calculates 2D Fast Hough transform of an image.
|
static void |
FastHoughTransform(UMat src,
UMat dst,
int dstMatDepth) |
static void |
FastHoughTransform(UMat src,
UMat dst,
int dstMatDepth,
int angleRange,
int op,
int makeSkew) |
static void |
findEllipses(GpuMat image,
GpuMat ellipses) |
static void |
findEllipses(GpuMat image,
GpuMat ellipses,
float scoreThreshold,
float reliabilityThreshold,
float centerDistanceThreshold) |
static void |
findEllipses(Mat image,
Mat ellipses) |
static void |
findEllipses(Mat image,
Mat ellipses,
float scoreThreshold,
float reliabilityThreshold,
float centerDistanceThreshold)
\addtogroup ximgproc
\{
|
static void |
findEllipses(UMat image,
UMat ellipses) |
static void |
findEllipses(UMat image,
UMat ellipses,
float scoreThreshold,
float reliabilityThreshold,
float centerDistanceThreshold) |
static void |
fourierDescriptor(GpuMat src,
GpuMat dst) |
static void |
fourierDescriptor(GpuMat src,
GpuMat dst,
int nbElt,
int nbFD) |
static void |
fourierDescriptor(Mat src,
Mat dst) |
static void |
fourierDescriptor(Mat src,
Mat dst,
int nbElt,
int nbFD)
\brief Fourier descriptors for planed closed curves
For more details about this implementation, please see \cite PersoonFu1977
|
static void |
fourierDescriptor(UMat src,
UMat dst) |
static void |
fourierDescriptor(UMat src,
UMat dst,
int nbElt,
int nbFD) |
static void |
getDisparityVis(GpuMat src,
GpuMat dst) |
static void |
getDisparityVis(GpuMat src,
GpuMat dst,
double scale) |
static void |
getDisparityVis(Mat src,
Mat dst) |
static void |
getDisparityVis(Mat src,
Mat dst,
double scale)
\brief Function for creating a disparity map visualization (clamped CV_8U image)
|
static void |
getDisparityVis(UMat src,
UMat dst) |
static void |
getDisparityVis(UMat src,
UMat dst,
double scale) |
static Mat |
getStructuringElement(int shape,
Size ksize)
\brief Returns a run length encoded structuring element of the specified size and shape.
|
static void |
GradientDericheX(GpuMat op,
GpuMat dst,
double alpha,
double omega) |
static void |
GradientDericheX(Mat op,
Mat dst,
double alpha,
double omega)
\brief Applies X Deriche filter to an image.
|
static void |
GradientDericheX(UMat op,
UMat dst,
double alpha,
double omega) |
static void |
GradientDericheY(GpuMat op,
GpuMat dst,
double alpha,
double omega) |
static void |
GradientDericheY(Mat op,
Mat dst,
double alpha,
double omega)
\addtogroup ximgproc_filters
\{
|
static void |
GradientDericheY(UMat op,
UMat dst,
double alpha,
double omega) |
static void |
GradientPaillouX(GpuMat op,
GpuMat _dst,
double alpha,
double omega) |
static void |
GradientPaillouX(Mat op,
Mat _dst,
double alpha,
double omega) |
static void |
GradientPaillouX(UMat op,
UMat _dst,
double alpha,
double omega) |
static void |
GradientPaillouY(GpuMat op,
GpuMat _dst,
double alpha,
double omega) |
static void |
GradientPaillouY(Mat op,
Mat _dst,
double alpha,
double omega)
\addtogroup ximgproc_filters
\{
|
static void |
GradientPaillouY(UMat op,
UMat _dst,
double alpha,
double omega) |
static void |
guidedFilter(GpuMat guide,
GpuMat src,
GpuMat dst,
int radius,
double eps) |
static void |
guidedFilter(GpuMat guide,
GpuMat src,
GpuMat dst,
int radius,
double eps,
int dDepth,
double scale) |
static void |
guidedFilter(Mat guide,
Mat src,
Mat dst,
int radius,
double eps) |
static void |
guidedFilter(Mat guide,
Mat src,
Mat dst,
int radius,
double eps,
int dDepth,
double scale)
\brief Simple one-line (Fast) Guided Filter call.
|
static void |
guidedFilter(UMat guide,
UMat src,
UMat dst,
int radius,
double eps) |
static void |
guidedFilter(UMat guide,
UMat src,
UMat dst,
int radius,
double eps,
int dDepth,
double scale) |
static Scalar4i |
HoughPoint2Line(Point houghPoint,
GpuMat srcImgInfo) |
static Scalar4i |
HoughPoint2Line(Point houghPoint,
GpuMat srcImgInfo,
int angleRange,
int makeSkew,
int rules) |
static Scalar4i |
HoughPoint2Line(Point houghPoint,
Mat srcImgInfo) |
static Scalar4i |
HoughPoint2Line(Point houghPoint,
Mat srcImgInfo,
int angleRange,
int makeSkew,
int rules)
\brief Calculates coordinates of line segment corresponded by point in Hough space.
|
static Scalar4i |
HoughPoint2Line(Point houghPoint,
UMat srcImgInfo) |
static Scalar4i |
HoughPoint2Line(Point houghPoint,
UMat srcImgInfo,
int angleRange,
int makeSkew,
int rules) |
static boolean |
isRLMorphologyPossible(GpuMat rlStructuringElement) |
static boolean |
isRLMorphologyPossible(Mat rlStructuringElement)
\brief Check whether a custom made structuring element can be used with run length morphological operations.
|
static boolean |
isRLMorphologyPossible(UMat rlStructuringElement) |
static void |
jointBilateralFilter(GpuMat joint,
GpuMat src,
GpuMat dst,
int d,
double sigmaColor,
double sigmaSpace) |
static void |
jointBilateralFilter(GpuMat joint,
GpuMat src,
GpuMat dst,
int d,
double sigmaColor,
double sigmaSpace,
int borderType) |
static void |
jointBilateralFilter(Mat joint,
Mat src,
Mat dst,
int d,
double sigmaColor,
double sigmaSpace) |
static void |
jointBilateralFilter(Mat joint,
Mat src,
Mat dst,
int d,
double sigmaColor,
double sigmaSpace,
int borderType)
\brief Applies the joint bilateral filter to an image.
|
static void |
jointBilateralFilter(UMat joint,
UMat src,
UMat dst,
int d,
double sigmaColor,
double sigmaSpace) |
static void |
jointBilateralFilter(UMat joint,
UMat src,
UMat dst,
int d,
double sigmaColor,
double sigmaSpace,
int borderType) |
static void |
l0Smooth(GpuMat src,
GpuMat dst) |
static void |
l0Smooth(GpuMat src,
GpuMat dst,
double lambda,
double kappa) |
static void |
l0Smooth(Mat src,
Mat dst) |
static void |
l0Smooth(Mat src,
Mat dst,
double lambda,
double kappa)
\brief Global image smoothing via L0 gradient minimization.
|
static void |
l0Smooth(UMat src,
UMat dst) |
static void |
l0Smooth(UMat src,
UMat dst,
double lambda,
double kappa) |
static void |
morphologyEx(GpuMat rlSrc,
GpuMat rlDest,
int op,
GpuMat rlKernel) |
static void |
morphologyEx(GpuMat rlSrc,
GpuMat rlDest,
int op,
GpuMat rlKernel,
boolean bBoundaryOnForErosion,
Point anchor) |
static void |
morphologyEx(Mat rlSrc,
Mat rlDest,
int op,
Mat rlKernel) |
static void |
morphologyEx(Mat rlSrc,
Mat rlDest,
int op,
Mat rlKernel,
boolean bBoundaryOnForErosion,
Point anchor)
\brief Applies a morphological operation to a run-length encoded binary image.
|
static void |
morphologyEx(UMat rlSrc,
UMat rlDest,
int op,
UMat rlKernel) |
static void |
morphologyEx(UMat rlSrc,
UMat rlDest,
int op,
UMat rlKernel,
boolean bBoundaryOnForErosion,
Point anchor) |
static void |
niBlackThreshold(GpuMat _src,
GpuMat _dst,
double maxValue,
int type,
int blockSize,
double k) |
static void |
niBlackThreshold(GpuMat _src,
GpuMat _dst,
double maxValue,
int type,
int blockSize,
double k,
int binarizationMethod,
double r) |
static void |
niBlackThreshold(Mat _src,
Mat _dst,
double maxValue,
int type,
int blockSize,
double k) |
static void |
niBlackThreshold(Mat _src,
Mat _dst,
double maxValue,
int type,
int blockSize,
double k,
int binarizationMethod,
double r)
\brief Performs thresholding on input images using Niblack's technique or some of the
popular variations it inspired.
|
static void |
niBlackThreshold(UMat _src,
UMat _dst,
double maxValue,
int type,
int blockSize,
double k) |
static void |
niBlackThreshold(UMat _src,
UMat _dst,
double maxValue,
int type,
int blockSize,
double k,
int binarizationMethod,
double r) |
static void |
paint(GpuMat image,
GpuMat rlSrc,
Scalar value) |
static void |
paint(Mat image,
Mat rlSrc,
Scalar value)
\brief Paint run length encoded binary image into an image.
|
static void |
paint(UMat image,
UMat rlSrc,
Scalar value) |
static DoublePointer |
PeiLinNormalization(GpuMat I) |
static void |
PeiLinNormalization(GpuMat I,
GpuMat T) |
static DoublePointer |
PeiLinNormalization(Mat I)
\addtogroup ximgproc
\{
|
static void |
PeiLinNormalization(Mat I,
Mat T)
\overload
|
static DoublePointer |
PeiLinNormalization(UMat I) |
static void |
PeiLinNormalization(UMat I,
UMat T) |
static void |
qconj(GpuMat qimg,
GpuMat qcimg) |
static void |
qconj(Mat qimg,
Mat qcimg)
\brief calculates conjugate of a quaternion image.
|
static void |
qconj(UMat qimg,
UMat qcimg) |
static void |
qdft(GpuMat img,
GpuMat qimg,
int flags,
boolean sideLeft) |
static void |
qdft(Mat img,
Mat qimg,
int flags,
boolean sideLeft)
\brief Performs a forward or inverse Discrete quaternion Fourier transform of a 2D quaternion array.
|
static void |
qdft(UMat img,
UMat qimg,
int flags,
boolean sideLeft) |
static void |
qmultiply(GpuMat src1,
GpuMat src2,
GpuMat dst) |
static void |
qmultiply(Mat src1,
Mat src2,
Mat dst)
\brief Calculates the per-element quaternion product of two arrays
|
static void |
qmultiply(UMat src1,
UMat src2,
UMat dst) |
static void |
qunitary(GpuMat qimg,
GpuMat qnimg) |
static void |
qunitary(Mat qimg,
Mat qnimg)
\brief divides each element by its modulus.
|
static void |
qunitary(UMat qimg,
UMat qnimg) |
static void |
RadonTransform(GpuMat src,
GpuMat dst) |
static void |
RadonTransform(GpuMat src,
GpuMat dst,
double theta,
double start_angle,
double end_angle,
boolean crop,
boolean norm) |
static void |
RadonTransform(Mat src,
Mat dst) |
static void |
RadonTransform(Mat src,
Mat dst,
double theta,
double start_angle,
double end_angle,
boolean crop,
boolean norm)
\brief Calculate Radon Transform of an image.
|
static void |
RadonTransform(UMat src,
UMat dst) |
static void |
RadonTransform(UMat src,
UMat dst,
double theta,
double start_angle,
double end_angle,
boolean crop,
boolean norm) |
static int |
readGT(BytePointer src_path,
GpuMat dst) |
static int |
readGT(BytePointer src_path,
Mat dst)
\brief Function for reading ground truth disparity maps.
|
static int |
readGT(BytePointer src_path,
UMat dst) |
static int |
readGT(String src_path,
GpuMat dst) |
static int |
readGT(String src_path,
Mat dst) |
static int |
readGT(String src_path,
UMat dst) |
static void |
rollingGuidanceFilter(GpuMat src,
GpuMat dst) |
static void |
rollingGuidanceFilter(GpuMat src,
GpuMat dst,
int d,
double sigmaColor,
double sigmaSpace,
int numOfIter,
int borderType) |
static void |
rollingGuidanceFilter(Mat src,
Mat dst) |
static void |
rollingGuidanceFilter(Mat src,
Mat dst,
int d,
double sigmaColor,
double sigmaSpace,
int numOfIter,
int borderType)
\brief Applies the rolling guidance filter to an image.
|
static void |
rollingGuidanceFilter(UMat src,
UMat dst) |
static void |
rollingGuidanceFilter(UMat src,
UMat dst,
int d,
double sigmaColor,
double sigmaSpace,
int numOfIter,
int borderType) |
static void |
thinning(GpuMat src,
GpuMat dst) |
static void |
thinning(GpuMat src,
GpuMat dst,
int thinningType) |
static void |
thinning(Mat src,
Mat dst) |
static void |
thinning(Mat src,
Mat dst,
int thinningType)
\brief Applies a binary blob thinning operation, to achieve a skeletization of the input image.
|
static void |
thinning(UMat src,
UMat dst) |
static void |
thinning(UMat src,
UMat dst,
int thinningType) |
static void |
threshold(GpuMat src,
GpuMat rlDest,
double thresh,
int type) |
static void |
threshold(Mat src,
Mat rlDest,
double thresh,
int type)
\addtogroup ximgproc_run_length_morphology
\{
|
static void |
threshold(UMat src,
UMat rlDest,
double thresh,
int type) |
static void |
transformFD(GpuMat src,
GpuMat t,
GpuMat dst) |
static void |
transformFD(GpuMat src,
GpuMat t,
GpuMat dst,
boolean fdContour) |
static void |
transformFD(Mat src,
Mat t,
Mat dst) |
static void |
transformFD(Mat src,
Mat t,
Mat dst,
boolean fdContour)
\brief transform a contour
|
static void |
transformFD(UMat src,
UMat t,
UMat dst) |
static void |
transformFD(UMat src,
UMat t,
UMat dst,
boolean fdContour) |
static void |
weightedMedianFilter(GpuMat joint,
GpuMat src,
GpuMat dst,
int r) |
static void |
weightedMedianFilter(GpuMat joint,
GpuMat src,
GpuMat dst,
int r,
double sigma,
int weightType,
GpuMat mask) |
static void |
weightedMedianFilter(Mat joint,
Mat src,
Mat dst,
int r) |
static void |
weightedMedianFilter(Mat joint,
Mat src,
Mat dst,
int r,
double sigma,
int weightType,
Mat mask)
\brief Applies weighted median filter to an image.
|
static void |
weightedMedianFilter(UMat joint,
UMat src,
UMat dst,
int r) |
static void |
weightedMedianFilter(UMat joint,
UMat src,
UMat dst,
int r,
double sigma,
int weightType,
UMat mask) |
map
public static final int THINNING_ZHANGSUEN
public static final int THINNING_GUOHALL
public static final int BINARIZATION_NIBLACK
public static final int BINARIZATION_SAUVOLA
public static final int BINARIZATION_WOLF
public static final int BINARIZATION_NICK
public static final int DTF_NC
public static final int DTF_IC
public static final int DTF_RF
public static final int GUIDED_FILTER
public static final int AM_FILTER
public static final int ARO_0_45
public static final int ARO_45_90
public static final int ARO_90_135
public static final int ARO_315_0
public static final int ARO_315_45
public static final int ARO_45_135
public static final int ARO_315_135
public static final int ARO_CTR_HOR
public static final int ARO_CTR_VER
public static final int FHT_MIN
public static final int FHT_MAX
public static final int FHT_ADD
public static final int FHT_AVE
public static final int HDO_RAW
public static final int HDO_DESKEW
public static final int RO_STRICT
public static final int RO_IGNORE_BORDERS
public static final int WMF_EXP
public static final int WMF_IV1
public static final int WMF_IV2
public static final int WMF_COS
public static final int WMF_JAC
public static final int WMF_OFF
public static final int SLIC
public static final int SLICO
public static final int MSLIC
@Namespace(value="cv::ximgproc") public static void niBlackThreshold(@ByVal Mat _src, @ByVal Mat _dst, double maxValue, int type, int blockSize, double k, int binarizationMethod, double r)
The function transforms a grayscale image to a binary image according to the formulae: - **THRESH_BINARY**
\[dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\]
- **THRESH_BINARY_INV**
\[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\]
where T(x,y)
is a threshold calculated individually for each pixel.
The threshold value T(x, y)
is determined based on the binarization method chosen. For
classic Niblack, it is the mean minus k
times standard deviation of
\texttt{blockSize} \times\texttt{blockSize}
neighborhood of (x, y)
.
The function can't process the image in-place.
_src
- Source 8-bit single-channel image._dst
- Destination image of the same size and the same type as src.maxValue
- Non-zero value assigned to the pixels for which the condition is satisfied,
used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.type
- Thresholding type, see cv::ThresholdTypes.blockSize
- Size of a pixel neighborhood that is used to calculate a threshold value
for the pixel: 3, 5, 7, and so on.k
- The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is
normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from
the mean.binarizationMethod
- Binarization method to use. By default, Niblack's technique is used.
Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.r
- The user-adjustable parameter used by Sauvola's technique. This is the dynamic range
of standard deviation.threshold, adaptiveThreshold
@Namespace(value="cv::ximgproc") public static void niBlackThreshold(@ByVal Mat _src, @ByVal Mat _dst, double maxValue, int type, int blockSize, double k)
@Namespace(value="cv::ximgproc") public static void niBlackThreshold(@ByVal UMat _src, @ByVal UMat _dst, double maxValue, int type, int blockSize, double k, int binarizationMethod, double r)
@Namespace(value="cv::ximgproc") public static void niBlackThreshold(@ByVal UMat _src, @ByVal UMat _dst, double maxValue, int type, int blockSize, double k)
@Namespace(value="cv::ximgproc") public static void niBlackThreshold(@ByVal GpuMat _src, @ByVal GpuMat _dst, double maxValue, int type, int blockSize, double k, int binarizationMethod, double r)
@Namespace(value="cv::ximgproc") public static void niBlackThreshold(@ByVal GpuMat _src, @ByVal GpuMat _dst, double maxValue, int type, int blockSize, double k)
@Namespace(value="cv::ximgproc") public static void thinning(@ByVal Mat src, @ByVal Mat dst, int thinningType)
The function transforms a binary blob image into a skeletized form using the technique of Zhang-Suen.
src
- Source 8-bit single-channel image, containing binary blobs, with blobs having 255 pixel values.dst
- Destination image of the same size and the same type as src. The function can work in-place.thinningType
- Value that defines which thinning algorithm should be used. See cv::ximgproc::ThinningTypes@Namespace(value="cv::ximgproc") public static void thinning(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv::ximgproc") public static void thinning(@ByVal UMat src, @ByVal UMat dst, int thinningType)
@Namespace(value="cv::ximgproc") public static void thinning(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static void thinning(@ByVal GpuMat src, @ByVal GpuMat dst, int thinningType)
@Namespace(value="cv::ximgproc") public static void thinning(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") public static void anisotropicDiffusion(@ByVal Mat src, @ByVal Mat dst, float alpha, float K, int niters)
The function applies Perona-Malik anisotropic diffusion to an image. This is the solution to the partial differential equation:
\[{\frac {\partial I}{\partial t}}={\mathrm {div}}\left(c(x,y,t)\nabla I\right)=\nabla c\cdot \nabla I+c(x,y,t)\Delta I\]
Suggested functions for c(x,y,t) are:
\[c\left(\|\nabla I\|\right)=e^{{-\left(\|\nabla I\|/K\right)^{2}}}\]
or
\[ c\left(\|\nabla I\|\right)={\frac {1}{1+\left({\frac {\|\nabla I\|}{K}}\right)^{2}}} \]
src
- Source image with 3 channels.dst
- Destination image of the same size and the same number of channels as src .alpha
- The amount of time to step forward by on each iteration (normally, it's between 0 and 1).K
- sensitivity to the edgesniters
- The number of iterations@Namespace(value="cv::ximgproc") public static void anisotropicDiffusion(@ByVal UMat src, @ByVal UMat dst, float alpha, float K, int niters)
@Namespace(value="cv::ximgproc") public static void anisotropicDiffusion(@ByVal GpuMat src, @ByVal GpuMat dst, float alpha, float K, int niters)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static DTFilter createDTFilter(@ByVal Mat guide, double sigmaSpatial, double sigmaColor, int mode, int numIters)
guide
- guided image (used to build transformed distance, which describes edge structure of
guided image).
sigmaSpatial
- {\sigma}_H
parameter in the original article, it's similar to the sigma in the
coordinate space into bilateralFilter.
sigmaColor
- {\sigma}_r
parameter in the original article, it's similar to the sigma in the
color space into bilateralFilter.
mode
- one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
filtering 2D signals in the article.
numIters
- optional number of iterations used for filtering, 3 is quite enough.
For more details about Domain Transform filter parameters, see the original article \cite Gastal11 and [Domain Transform filter homepage](http://www.inf.ufrgs.br/~eslgastal/DomainTransform/).
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static DTFilter createDTFilter(@ByVal Mat guide, double sigmaSpatial, double sigmaColor)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static DTFilter createDTFilter(@ByVal UMat guide, double sigmaSpatial, double sigmaColor, int mode, int numIters)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static DTFilter createDTFilter(@ByVal UMat guide, double sigmaSpatial, double sigmaColor)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static DTFilter createDTFilter(@ByVal GpuMat guide, double sigmaSpatial, double sigmaColor, int mode, int numIters)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static DTFilter createDTFilter(@ByVal GpuMat guide, double sigmaSpatial, double sigmaColor)
@Namespace(value="cv::ximgproc") public static void dtFilter(@ByVal Mat guide, @ByVal Mat src, @ByVal Mat dst, double sigmaSpatial, double sigmaColor, int mode, int numIters)
guide
- guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
depth and up to 4 channels.src
- filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.dst
- destination imagesigmaSpatial
- {\sigma}_H
parameter in the original article, it's similar to the sigma in the
coordinate space into bilateralFilter.sigmaColor
- {\sigma}_r
parameter in the original article, it's similar to the sigma in the
color space into bilateralFilter.mode
- one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
filtering 2D signals in the article.numIters
- optional number of iterations used for filtering, 3 is quite enough.bilateralFilter, guidedFilter, amFilter
@Namespace(value="cv::ximgproc") public static void dtFilter(@ByVal Mat guide, @ByVal Mat src, @ByVal Mat dst, double sigmaSpatial, double sigmaColor)
@Namespace(value="cv::ximgproc") public static void dtFilter(@ByVal UMat guide, @ByVal UMat src, @ByVal UMat dst, double sigmaSpatial, double sigmaColor, int mode, int numIters)
@Namespace(value="cv::ximgproc") public static void dtFilter(@ByVal UMat guide, @ByVal UMat src, @ByVal UMat dst, double sigmaSpatial, double sigmaColor)
@Namespace(value="cv::ximgproc") public static void dtFilter(@ByVal GpuMat guide, @ByVal GpuMat src, @ByVal GpuMat dst, double sigmaSpatial, double sigmaColor, int mode, int numIters)
@Namespace(value="cv::ximgproc") public static void dtFilter(@ByVal GpuMat guide, @ByVal GpuMat src, @ByVal GpuMat dst, double sigmaSpatial, double sigmaColor)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static GuidedFilter createGuidedFilter(@ByVal Mat guide, int radius, double eps, double scale)
guide
- guided image (or array of images) with up to 3 channels, if it have more then 3
channels then only first 3 channels will be used.
radius
- radius of Guided Filter.
eps
- regularization term of Guided Filter. {eps}^2
is similar to the sigma in the color
space into bilateralFilter.
scale
- subsample factor of Fast Guided Filter, use a scale less than 1 to speeds up computation
with almost no visible degradation. (e.g. scale==0.5 shrinks the image by 2x inside the filter)
For more details about (Fast) Guided Filter parameters, see the original articles \cite Kaiming10 \cite Kaiming15 .
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static GuidedFilter createGuidedFilter(@ByVal Mat guide, int radius, double eps)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static GuidedFilter createGuidedFilter(@ByVal UMat guide, int radius, double eps, double scale)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static GuidedFilter createGuidedFilter(@ByVal UMat guide, int radius, double eps)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static GuidedFilter createGuidedFilter(@ByVal GpuMat guide, int radius, double eps, double scale)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static GuidedFilter createGuidedFilter(@ByVal GpuMat guide, int radius, double eps)
@Namespace(value="cv::ximgproc") public static void guidedFilter(@ByVal Mat guide, @ByVal Mat src, @ByVal Mat dst, int radius, double eps, int dDepth, double scale)
If you have multiple images to filter with the same guided image then use GuidedFilter interface to avoid extra computations on initialization stage.
guide
- guided image (or array of images) with up to 3 channels, if it have more then 3
channels then only first 3 channels will be used.
src
- filtering image with any numbers of channels.
dst
- output image.
radius
- radius of Guided Filter.
eps
- regularization term of Guided Filter. {eps}^2
is similar to the sigma in the color
space into bilateralFilter.
dDepth
- optional depth of the output image.
scale
- subsample factor of Fast Guided Filter, use a scale less than 1 to speeds up computation
with almost no visible degradation. (e.g. scale==0.5 shrinks the image by 2x inside the filter)
bilateralFilter, dtFilter, amFilter
@Namespace(value="cv::ximgproc") public static void guidedFilter(@ByVal Mat guide, @ByVal Mat src, @ByVal Mat dst, int radius, double eps)
@Namespace(value="cv::ximgproc") public static void guidedFilter(@ByVal UMat guide, @ByVal UMat src, @ByVal UMat dst, int radius, double eps, int dDepth, double scale)
@Namespace(value="cv::ximgproc") public static void guidedFilter(@ByVal UMat guide, @ByVal UMat src, @ByVal UMat dst, int radius, double eps)
@Namespace(value="cv::ximgproc") public static void guidedFilter(@ByVal GpuMat guide, @ByVal GpuMat src, @ByVal GpuMat dst, int radius, double eps, int dDepth, double scale)
@Namespace(value="cv::ximgproc") public static void guidedFilter(@ByVal GpuMat guide, @ByVal GpuMat src, @ByVal GpuMat dst, int radius, double eps)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static AdaptiveManifoldFilter createAMFilter(double sigma_s, double sigma_r, @Cast(value="bool") boolean adjust_outliers)
sigma_s
- spatial standard deviation.
sigma_r
- color space standard deviation, it is similar to the sigma in the color space into
bilateralFilter.
adjust_outliers
- optional, specify perform outliers adjust operation or not, (Eq. 9) in the
original paper.
For more details about Adaptive Manifold Filter parameters, see the original article \cite Gastal12 .
\note Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1] color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same sigmas in bilateralFilter and dtFilter functions.
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static AdaptiveManifoldFilter createAMFilter(double sigma_s, double sigma_r)
@Namespace(value="cv::ximgproc") public static void amFilter(@ByVal Mat joint, @ByVal Mat src, @ByVal Mat dst, double sigma_s, double sigma_r, @Cast(value="bool") boolean adjust_outliers)
joint
- joint (also called as guided) image or array of images with any numbers of channels.
src
- filtering image with any numbers of channels.
dst
- output image.
sigma_s
- spatial standard deviation.
sigma_r
- color space standard deviation, it is similar to the sigma in the color space into
bilateralFilter.
adjust_outliers
- optional, specify perform outliers adjust operation or not, (Eq. 9) in the
original paper.
\note Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1] color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same sigmas in bilateralFilter and dtFilter functions. @see bilateralFilter, dtFilter, guidedFilter
@Namespace(value="cv::ximgproc") public static void amFilter(@ByVal Mat joint, @ByVal Mat src, @ByVal Mat dst, double sigma_s, double sigma_r)
@Namespace(value="cv::ximgproc") public static void amFilter(@ByVal UMat joint, @ByVal UMat src, @ByVal UMat dst, double sigma_s, double sigma_r, @Cast(value="bool") boolean adjust_outliers)
@Namespace(value="cv::ximgproc") public static void amFilter(@ByVal UMat joint, @ByVal UMat src, @ByVal UMat dst, double sigma_s, double sigma_r)
@Namespace(value="cv::ximgproc") public static void amFilter(@ByVal GpuMat joint, @ByVal GpuMat src, @ByVal GpuMat dst, double sigma_s, double sigma_r, @Cast(value="bool") boolean adjust_outliers)
@Namespace(value="cv::ximgproc") public static void amFilter(@ByVal GpuMat joint, @ByVal GpuMat src, @ByVal GpuMat dst, double sigma_s, double sigma_r)
@Namespace(value="cv::ximgproc") public static void jointBilateralFilter(@ByVal Mat joint, @ByVal Mat src, @ByVal Mat dst, int d, double sigmaColor, double sigmaSpace, int borderType)
joint
- Joint 8-bit or floating-point, 1-channel or 3-channel image.
src
- Source 8-bit or floating-point, 1-channel or 3-channel image with the same depth as joint
image.
dst
- Destination image of the same size and type as src .
d
- Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
it is computed from sigmaSpace .
sigmaColor
- Filter sigma in the color space. A larger value of the parameter means that
farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
larger areas of semi-equal color.
sigmaSpace
- Filter sigma in the coordinate space. A larger value of the parameter means that
farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
proportional to sigmaSpace .
borderType
- \note bilateralFilter and jointBilateralFilter use L1 norm to compute difference between colors.
bilateralFilter, amFilter
@Namespace(value="cv::ximgproc") public static void jointBilateralFilter(@ByVal Mat joint, @ByVal Mat src, @ByVal Mat dst, int d, double sigmaColor, double sigmaSpace)
@Namespace(value="cv::ximgproc") public static void jointBilateralFilter(@ByVal UMat joint, @ByVal UMat src, @ByVal UMat dst, int d, double sigmaColor, double sigmaSpace, int borderType)
@Namespace(value="cv::ximgproc") public static void jointBilateralFilter(@ByVal UMat joint, @ByVal UMat src, @ByVal UMat dst, int d, double sigmaColor, double sigmaSpace)
@Namespace(value="cv::ximgproc") public static void jointBilateralFilter(@ByVal GpuMat joint, @ByVal GpuMat src, @ByVal GpuMat dst, int d, double sigmaColor, double sigmaSpace, int borderType)
@Namespace(value="cv::ximgproc") public static void jointBilateralFilter(@ByVal GpuMat joint, @ByVal GpuMat src, @ByVal GpuMat dst, int d, double sigmaColor, double sigmaSpace)
@Namespace(value="cv::ximgproc") public static void bilateralTextureFilter(@ByVal Mat src, @ByVal Mat dst, int fr, int numIter, double sigmaAlpha, double sigmaAvg)
src
- Source image whose depth is 8-bit UINT or 32-bit FLOAT
dst
- Destination image of the same size and type as src.
fr
- Radius of kernel to be used for filtering. It should be positive integer
numIter
- Number of iterations of algorithm, It should be positive integer
sigmaAlpha
- Controls the sharpness of the weight transition from edges to smooth/texture regions, where
a bigger value means sharper transition. When the value is negative, it is automatically calculated.
sigmaAvg
- Range blur parameter for texture blurring. Larger value makes result to be more blurred. When the
value is negative, it is automatically calculated as described in the paper.
rollingGuidanceFilter, bilateralFilter
@Namespace(value="cv::ximgproc") public static void bilateralTextureFilter(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv::ximgproc") public static void bilateralTextureFilter(@ByVal UMat src, @ByVal UMat dst, int fr, int numIter, double sigmaAlpha, double sigmaAvg)
@Namespace(value="cv::ximgproc") public static void bilateralTextureFilter(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static void bilateralTextureFilter(@ByVal GpuMat src, @ByVal GpuMat dst, int fr, int numIter, double sigmaAlpha, double sigmaAvg)
@Namespace(value="cv::ximgproc") public static void bilateralTextureFilter(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") public static void rollingGuidanceFilter(@ByVal Mat src, @ByVal Mat dst, int d, double sigmaColor, double sigmaSpace, int numOfIter, int borderType)
For more details, please see \cite zhang2014rolling
src
- Source 8-bit or floating-point, 1-channel or 3-channel image.
dst
- Destination image of the same size and type as src.
d
- Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
it is computed from sigmaSpace .
sigmaColor
- Filter sigma in the color space. A larger value of the parameter means that
farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
larger areas of semi-equal color.
sigmaSpace
- Filter sigma in the coordinate space. A larger value of the parameter means that
farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
proportional to sigmaSpace .
numOfIter
- Number of iterations of joint edge-preserving filtering applied on the source image.
borderType
- \note rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
jointBilateralFilter, bilateralFilter, amFilter
@Namespace(value="cv::ximgproc") public static void rollingGuidanceFilter(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv::ximgproc") public static void rollingGuidanceFilter(@ByVal UMat src, @ByVal UMat dst, int d, double sigmaColor, double sigmaSpace, int numOfIter, int borderType)
@Namespace(value="cv::ximgproc") public static void rollingGuidanceFilter(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static void rollingGuidanceFilter(@ByVal GpuMat src, @ByVal GpuMat dst, int d, double sigmaColor, double sigmaSpace, int numOfIter, int borderType)
@Namespace(value="cv::ximgproc") public static void rollingGuidanceFilter(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastBilateralSolverFilter createFastBilateralSolverFilter(@ByVal Mat guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
guide
- image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
sigma_spatial
- parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
sigma_luma
- parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
sigma_chroma
- parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
lambda
- smoothness strength parameter for solver.
num_iter
- number of iterations used for solver, 25 is usually enough.
max_tol
- convergence tolerance used for solver.
For more details about the Fast Bilateral Solver parameters, see the original paper \cite BarronPoole2016.
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastBilateralSolverFilter createFastBilateralSolverFilter(@ByVal Mat guide, double sigma_spatial, double sigma_luma, double sigma_chroma)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastBilateralSolverFilter createFastBilateralSolverFilter(@ByVal UMat guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastBilateralSolverFilter createFastBilateralSolverFilter(@ByVal UMat guide, double sigma_spatial, double sigma_luma, double sigma_chroma)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastBilateralSolverFilter createFastBilateralSolverFilter(@ByVal GpuMat guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastBilateralSolverFilter createFastBilateralSolverFilter(@ByVal GpuMat guide, double sigma_spatial, double sigma_luma, double sigma_chroma)
@Namespace(value="cv::ximgproc") public static void fastBilateralSolverFilter(@ByVal Mat guide, @ByVal Mat src, @ByVal Mat confidence, @ByVal Mat dst, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
guide
- image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
src
- source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
confidence
- confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
dst
- destination image.
sigma_spatial
- parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
sigma_luma
- parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
sigma_chroma
- parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
lambda
- smoothness strength parameter for solver.
num_iter
- number of iterations used for solver, 25 is usually enough.
max_tol
- convergence tolerance used for solver.
For more details about the Fast Bilateral Solver parameters, see the original paper \cite BarronPoole2016.
\note Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
@Namespace(value="cv::ximgproc") public static void fastBilateralSolverFilter(@ByVal Mat guide, @ByVal Mat src, @ByVal Mat confidence, @ByVal Mat dst)
@Namespace(value="cv::ximgproc") public static void fastBilateralSolverFilter(@ByVal UMat guide, @ByVal UMat src, @ByVal UMat confidence, @ByVal UMat dst, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
@Namespace(value="cv::ximgproc") public static void fastBilateralSolverFilter(@ByVal UMat guide, @ByVal UMat src, @ByVal UMat confidence, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static void fastBilateralSolverFilter(@ByVal GpuMat guide, @ByVal GpuMat src, @ByVal GpuMat confidence, @ByVal GpuMat dst, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
@Namespace(value="cv::ximgproc") public static void fastBilateralSolverFilter(@ByVal GpuMat guide, @ByVal GpuMat src, @ByVal GpuMat confidence, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastGlobalSmootherFilter createFastGlobalSmootherFilter(@ByVal Mat guide, double lambda, double sigma_color, double lambda_attenuation, int num_iter)
guide
- image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
lambda
- parameter defining the amount of regularization
sigma_color
- parameter, that is similar to color space sigma in bilateralFilter.
lambda_attenuation
- internal parameter, defining how much lambda decreases after each iteration. Normally,
it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
num_iter
- number of iterations used for filtering, 3 is usually enough.
For more details about Fast Global Smoother parameters, see the original paper \cite Min2014. However, please note that there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors propose to dynamically update the guide image after each iteration. To maximize the performance this feature was not implemented here.
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastGlobalSmootherFilter createFastGlobalSmootherFilter(@ByVal Mat guide, double lambda, double sigma_color)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastGlobalSmootherFilter createFastGlobalSmootherFilter(@ByVal UMat guide, double lambda, double sigma_color, double lambda_attenuation, int num_iter)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastGlobalSmootherFilter createFastGlobalSmootherFilter(@ByVal UMat guide, double lambda, double sigma_color)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastGlobalSmootherFilter createFastGlobalSmootherFilter(@ByVal GpuMat guide, double lambda, double sigma_color, double lambda_attenuation, int num_iter)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastGlobalSmootherFilter createFastGlobalSmootherFilter(@ByVal GpuMat guide, double lambda, double sigma_color)
@Namespace(value="cv::ximgproc") public static void fastGlobalSmootherFilter(@ByVal Mat guide, @ByVal Mat src, @ByVal Mat dst, double lambda, double sigma_color, double lambda_attenuation, int num_iter)
guide
- image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
src
- source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
dst
- destination image.
lambda
- parameter defining the amount of regularization
sigma_color
- parameter, that is similar to color space sigma in bilateralFilter.
lambda_attenuation
- internal parameter, defining how much lambda decreases after each iteration. Normally,
it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
num_iter
- number of iterations used for filtering, 3 is usually enough.@Namespace(value="cv::ximgproc") public static void fastGlobalSmootherFilter(@ByVal Mat guide, @ByVal Mat src, @ByVal Mat dst, double lambda, double sigma_color)
@Namespace(value="cv::ximgproc") public static void fastGlobalSmootherFilter(@ByVal UMat guide, @ByVal UMat src, @ByVal UMat dst, double lambda, double sigma_color, double lambda_attenuation, int num_iter)
@Namespace(value="cv::ximgproc") public static void fastGlobalSmootherFilter(@ByVal UMat guide, @ByVal UMat src, @ByVal UMat dst, double lambda, double sigma_color)
@Namespace(value="cv::ximgproc") public static void fastGlobalSmootherFilter(@ByVal GpuMat guide, @ByVal GpuMat src, @ByVal GpuMat dst, double lambda, double sigma_color, double lambda_attenuation, int num_iter)
@Namespace(value="cv::ximgproc") public static void fastGlobalSmootherFilter(@ByVal GpuMat guide, @ByVal GpuMat src, @ByVal GpuMat dst, double lambda, double sigma_color)
@Namespace(value="cv::ximgproc") public static void l0Smooth(@ByVal Mat src, @ByVal Mat dst, double lambda, double kappa)
src
- source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
dst
- destination image.
lambda
- parameter defining the smooth term weight.
kappa
- parameter defining the increasing factor of the weight of the gradient data term.
For more details about L0 Smoother, see the original paper \cite xu2011image.
@Namespace(value="cv::ximgproc") public static void l0Smooth(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv::ximgproc") public static void l0Smooth(@ByVal UMat src, @ByVal UMat dst, double lambda, double kappa)
@Namespace(value="cv::ximgproc") public static void l0Smooth(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static void l0Smooth(@ByVal GpuMat src, @ByVal GpuMat dst, double lambda, double kappa)
@Namespace(value="cv::ximgproc") public static void l0Smooth(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static DisparityWLSFilter createDisparityWLSFilter(@opencv_core.Ptr StereoMatcher matcher_left)
matcher_left
- stereo matcher instance that will be used with the filter@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static StereoMatcher createRightMatcher(@opencv_core.Ptr StereoMatcher matcher_left)
matcher_left
- main stereo matcher instance that will be used with the filter@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static DisparityWLSFilter createDisparityWLSFilterGeneric(@Cast(value="bool") boolean use_confidence)
use_confidence
- filtering with confidence requires two disparity maps (for the left and right views) and is
approximately two times slower. However, quality is typically significantly better.@Namespace(value="cv::ximgproc") public static int readGT(@opencv_core.Str BytePointer src_path, @ByVal Mat dst)
src_path
- path to the image, containing ground-truth disparity map
dst
- output disparity map, CV_16S depth
@Namespace(value="cv::ximgproc") public static int readGT(@opencv_core.Str String src_path, @ByVal Mat dst)
@Namespace(value="cv::ximgproc") public static int readGT(@opencv_core.Str String src_path, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static int readGT(@opencv_core.Str BytePointer src_path, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static int readGT(@opencv_core.Str BytePointer src_path, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") public static int readGT(@opencv_core.Str String src_path, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") public static double computeMSE(@ByVal Mat GT, @ByVal Mat src, @ByVal Rect ROI)
GT
- ground truth disparity map
src
- disparity map to evaluate
ROI
- region of interest
@Namespace(value="cv::ximgproc") public static double computeMSE(@ByVal UMat GT, @ByVal UMat src, @ByVal Rect ROI)
@Namespace(value="cv::ximgproc") public static double computeMSE(@ByVal GpuMat GT, @ByVal GpuMat src, @ByVal Rect ROI)
@Namespace(value="cv::ximgproc") public static double computeBadPixelPercent(@ByVal Mat GT, @ByVal Mat src, @ByVal Rect ROI, int thresh)
GT
- ground truth disparity map
src
- disparity map to evaluate
ROI
- region of interest
thresh
- threshold used to determine "bad" pixels
@Namespace(value="cv::ximgproc") public static double computeBadPixelPercent(@ByVal Mat GT, @ByVal Mat src, @ByVal Rect ROI)
@Namespace(value="cv::ximgproc") public static double computeBadPixelPercent(@ByVal UMat GT, @ByVal UMat src, @ByVal Rect ROI, int thresh)
@Namespace(value="cv::ximgproc") public static double computeBadPixelPercent(@ByVal UMat GT, @ByVal UMat src, @ByVal Rect ROI)
@Namespace(value="cv::ximgproc") public static double computeBadPixelPercent(@ByVal GpuMat GT, @ByVal GpuMat src, @ByVal Rect ROI, int thresh)
@Namespace(value="cv::ximgproc") public static double computeBadPixelPercent(@ByVal GpuMat GT, @ByVal GpuMat src, @ByVal Rect ROI)
@Namespace(value="cv::ximgproc") public static void getDisparityVis(@ByVal Mat src, @ByVal Mat dst, double scale)
src
- input disparity map (CV_16S depth)
dst
- output visualization
scale
- disparity map will be multiplied by this value for visualization@Namespace(value="cv::ximgproc") public static void getDisparityVis(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv::ximgproc") public static void getDisparityVis(@ByVal UMat src, @ByVal UMat dst, double scale)
@Namespace(value="cv::ximgproc") public static void getDisparityVis(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static void getDisparityVis(@ByVal GpuMat src, @ByVal GpuMat dst, double scale)
@Namespace(value="cv::ximgproc") public static void getDisparityVis(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static EdgeAwareInterpolator createEdgeAwareInterpolator()
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static RICInterpolator createRICInterpolator()
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static RFFeatureGetter createRFFeatureGetter()
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static StructuredEdgeDetection createStructuredEdgeDetection(@opencv_core.Str BytePointer model, @Const @opencv_core.Ptr RFFeatureGetter howToGetFeatures)
model
- : name of the file where the model is storedhowToGetFeatures
- : optional object inheriting from RFFeatureGetter.
You need it only if you would like to train your
own forest, pass NULL otherwise@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static StructuredEdgeDetection createStructuredEdgeDetection(@opencv_core.Str BytePointer model)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static StructuredEdgeDetection createStructuredEdgeDetection(@opencv_core.Str String model, @Const @opencv_core.Ptr RFFeatureGetter howToGetFeatures)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static StructuredEdgeDetection createStructuredEdgeDetection(@opencv_core.Str String model)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag, float maxAspectRatio, float minBoxArea, float gamma, float kappa)
alpha
- step size of sliding window search.beta
- nms threshold for object proposals.eta
- adaptation rate for nms threshold.minScore
- min score of boxes to detect.maxBoxes
- max number of boxes to detect.edgeMinMag
- edge min magnitude. Increase to trade off accuracy for speed.edgeMergeThr
- edge merge threshold. Increase to trade off accuracy for speed.clusterMinMag
- cluster min magnitude. Increase to trade off accuracy for speed.maxAspectRatio
- max aspect ratio of boxes.minBoxArea
- minimum area of boxes.gamma
- affinity sensitivity.kappa
- scale sensitivity.@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static EdgeBoxes createEdgeBoxes()
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelSEEDS createSuperpixelSEEDS(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels, int prior, int histogram_bins, @Cast(value="bool") boolean double_step)
image_width
- Image width.image_height
- Image height.image_channels
- Number of channels of the image.num_superpixels
- Desired number of superpixels. Note that the actual number may be smaller
due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
get the actual number.num_levels
- Number of block levels. The more levels, the more accurate is the segmentation,
but needs more memory and CPU time.prior
- enable 3x3 shape smoothing term if \>0. A larger value leads to smoother shapes. prior
must be in the range [0, 5].histogram_bins
- Number of histogram bins.double_step
- If true, iterate each block level twice for higher accuracy.
The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and double_step.
The number of levels in num_levels defines the amount of block levels that the algorithm use in the optimization. The initialization is a grid, in which the superpixels are equally distributed through the width and the height of the image. The larger blocks correspond to the superpixel size, and the levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels, recursively until the smaller block level. An example of initialization of 4 block levels is illustrated in the following figure.

@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelSEEDS createSuperpixelSEEDS(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels)
@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static GraphSegmentation createGraphSegmentation(double sigma, float k, int min_size)
sigma
- The sigma parameter, used to smooth imagek
- The k parameter of the algorythmmin_size
- The minimum size of segments@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static GraphSegmentation createGraphSegmentation()
@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static SelectiveSearchSegmentationStrategyColor createSelectiveSearchSegmentationStrategyColor()
@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static SelectiveSearchSegmentationStrategySize createSelectiveSearchSegmentationStrategySize()
@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static SelectiveSearchSegmentationStrategyTexture createSelectiveSearchSegmentationStrategyTexture()
@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static SelectiveSearchSegmentationStrategyFill createSelectiveSearchSegmentationStrategyFill()
@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static SelectiveSearchSegmentationStrategyMultiple createSelectiveSearchSegmentationStrategyMultiple()
@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static SelectiveSearchSegmentationStrategyMultiple createSelectiveSearchSegmentationStrategyMultiple(@opencv_core.Ptr SelectiveSearchSegmentationStrategy s1)
s1
- The first strategy@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static SelectiveSearchSegmentationStrategyMultiple createSelectiveSearchSegmentationStrategyMultiple(@opencv_core.Ptr SelectiveSearchSegmentationStrategy s1, @opencv_core.Ptr SelectiveSearchSegmentationStrategy s2)
s1
- The first strategys2
- The second strategy@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static SelectiveSearchSegmentationStrategyMultiple createSelectiveSearchSegmentationStrategyMultiple(@opencv_core.Ptr SelectiveSearchSegmentationStrategy s1, @opencv_core.Ptr SelectiveSearchSegmentationStrategy s2, @opencv_core.Ptr SelectiveSearchSegmentationStrategy s3)
s1
- The first strategys2
- The second strategys3
- The third strategy@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static SelectiveSearchSegmentationStrategyMultiple createSelectiveSearchSegmentationStrategyMultiple(@opencv_core.Ptr SelectiveSearchSegmentationStrategy s1, @opencv_core.Ptr SelectiveSearchSegmentationStrategy s2, @opencv_core.Ptr SelectiveSearchSegmentationStrategy s3, @opencv_core.Ptr SelectiveSearchSegmentationStrategy s4)
s1
- The first strategys2
- The second strategys3
- The third strategys4
- The forth strategy@Namespace(value="cv::ximgproc::segmentation") @opencv_core.Ptr public static SelectiveSearchSegmentation createSelectiveSearchSegmentation()
@Namespace(value="cv::ximgproc") public static void FastHoughTransform(@ByVal Mat src, @ByVal Mat dst, int dstMatDepth, int angleRange, int op, int makeSkew)
dst
- The destination image, result of transformation.src
- The source (input) image.dstMatDepth
- The depth of destination imageop
- The operation to be applied, see cv::HoughOpangleRange
- The part of Hough space to calculate, see cv::AngleRangeOptionmakeSkew
- Specifies to do or not to do image skewing, see cv::HoughDeskewOption
The function calculates the fast Hough transform for full, half or quarter
range of angles.@Namespace(value="cv::ximgproc") public static void FastHoughTransform(@ByVal Mat src, @ByVal Mat dst, int dstMatDepth)
@Namespace(value="cv::ximgproc") public static void FastHoughTransform(@ByVal UMat src, @ByVal UMat dst, int dstMatDepth, int angleRange, int op, int makeSkew)
@Namespace(value="cv::ximgproc") public static void FastHoughTransform(@ByVal UMat src, @ByVal UMat dst, int dstMatDepth)
@Namespace(value="cv::ximgproc") public static void FastHoughTransform(@ByVal GpuMat src, @ByVal GpuMat dst, int dstMatDepth, int angleRange, int op, int makeSkew)
@Namespace(value="cv::ximgproc") public static void FastHoughTransform(@ByVal GpuMat src, @ByVal GpuMat dst, int dstMatDepth)
@Namespace(value="cv::ximgproc") @ByVal @Cast(value="cv::Vec4i*") public static Scalar4i HoughPoint2Line(@Const @ByRef Point houghPoint, @ByVal Mat srcImgInfo, int angleRange, int makeSkew, int rules)
houghPoint
- Point in Hough space.srcImgInfo
- The source (input) image of Hough transform.angleRange
- The part of Hough space where point is situated, see cv::AngleRangeOptionmakeSkew
- Specifies to do or not to do image skewing, see cv::HoughDeskewOptionrules
- Specifies strictness of line segment calculating, see cv::RulesOption
\retval [Vec4i] Coordinates of line segment corresponded by point in Hough space.
\remarks If rules parameter set to RO_STRICT
then returned line cut along the border of source image.
\remarks If rules parameter set to RO_WEAK then in case of point, which belongs
the incorrect part of Hough image, returned line will not intersect source image.
The function calculates coordinates of line segment corresponded by point in Hough space.@Namespace(value="cv::ximgproc") @ByVal @Cast(value="cv::Vec4i*") public static Scalar4i HoughPoint2Line(@Const @ByRef Point houghPoint, @ByVal Mat srcImgInfo)
@Namespace(value="cv::ximgproc") @ByVal @Cast(value="cv::Vec4i*") public static Scalar4i HoughPoint2Line(@Const @ByRef Point houghPoint, @ByVal UMat srcImgInfo, int angleRange, int makeSkew, int rules)
@Namespace(value="cv::ximgproc") @ByVal @Cast(value="cv::Vec4i*") public static Scalar4i HoughPoint2Line(@Const @ByRef Point houghPoint, @ByVal UMat srcImgInfo)
@Namespace(value="cv::ximgproc") @ByVal @Cast(value="cv::Vec4i*") public static Scalar4i HoughPoint2Line(@Const @ByRef Point houghPoint, @ByVal GpuMat srcImgInfo, int angleRange, int makeSkew, int rules)
@Namespace(value="cv::ximgproc") @ByVal @Cast(value="cv::Vec4i*") public static Scalar4i HoughPoint2Line(@Const @ByRef Point houghPoint, @ByVal GpuMat srcImgInfo)
@Namespace(value="cv::ximgproc") public static void covarianceEstimation(@ByVal Mat src, @ByVal Mat dst, int windowRows, int windowCols)
src
- The source image. Input image must be of a complex type.dst
- The destination estimated covariance matrix. Output matrix will be size (windowRows*windowCols, windowRows*windowCols).windowRows
- The number of rows in the window.windowCols
- The number of cols in the window.
The window size parameters control the accuracy of the estimation.
The sliding window moves over the entire image from the top-left corner
to the bottom right corner. Each location of the window represents a sample.
If the window is the size of the image, then this gives the exact covariance matrix.
For all other cases, the sizes of the window will impact the number of samples
and the number of elements in the estimated covariance matrix.@Namespace(value="cv::ximgproc") public static void covarianceEstimation(@ByVal UMat src, @ByVal UMat dst, int windowRows, int windowCols)
@Namespace(value="cv::ximgproc") public static void covarianceEstimation(@ByVal GpuMat src, @ByVal GpuMat dst, int windowRows, int windowCols)
@Namespace(value="cv::ximgproc") public static void weightedMedianFilter(@ByVal Mat joint, @ByVal Mat src, @ByVal Mat dst, int r, double sigma, int weightType, @ByVal(nullValue="cv::InputArray(cv::noArray())") Mat mask)
joint
- Joint 8-bit, 1-channel or 3-channel image.src
- Source 8-bit or floating-point, 1-channel or 3-channel image.dst
- Destination image.r
- Radius of filtering kernel, should be a positive integer.sigma
- Filter range standard deviation for the joint image.weightType
- weightType The type of weight definition, see WMFWeightTypemask
- A 0-1 mask that has the same size with I. This mask is used to ignore the effect of some pixels. If the pixel value on mask is 0,
the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.medianBlur, jointBilateralFilter
@Namespace(value="cv::ximgproc") public static void weightedMedianFilter(@ByVal Mat joint, @ByVal Mat src, @ByVal Mat dst, int r)
@Namespace(value="cv::ximgproc") public static void weightedMedianFilter(@ByVal UMat joint, @ByVal UMat src, @ByVal UMat dst, int r, double sigma, int weightType, @ByVal(nullValue="cv::InputArray(cv::noArray())") UMat mask)
@Namespace(value="cv::ximgproc") public static void weightedMedianFilter(@ByVal UMat joint, @ByVal UMat src, @ByVal UMat dst, int r)
@Namespace(value="cv::ximgproc") public static void weightedMedianFilter(@ByVal GpuMat joint, @ByVal GpuMat src, @ByVal GpuMat dst, int r, double sigma, int weightType, @ByVal(nullValue="cv::InputArray(cv::noArray())") GpuMat mask)
@Namespace(value="cv::ximgproc") public static void weightedMedianFilter(@ByVal GpuMat joint, @ByVal GpuMat src, @ByVal GpuMat dst, int r)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelSLIC createSuperpixelSLIC(@ByVal Mat image, int algorithm, int region_size, float ruler)
image
- Image to segmentalgorithm
- Chooses the algorithm variant to use:
SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.region_size
- Chooses an average superpixel size measured in pixelsruler
- Chooses the enforcement of superpixel smoothness factor of superpixel
The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future computing iterations over the given image. For enanched results it is recommended for color images to preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.

@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelSLIC createSuperpixelSLIC(@ByVal Mat image)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelSLIC createSuperpixelSLIC(@ByVal UMat image, int algorithm, int region_size, float ruler)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelSLIC createSuperpixelSLIC(@ByVal UMat image)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelSLIC createSuperpixelSLIC(@ByVal GpuMat image, int algorithm, int region_size, float ruler)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelSLIC createSuperpixelSLIC(@ByVal GpuMat image)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelLSC createSuperpixelLSC(@ByVal Mat image, int region_size, float ratio)
image
- Image to segmentregion_size
- Chooses an average superpixel size measured in pixelsratio
- Chooses the enforcement of superpixel compactness factor of superpixel
The function initializes a SuperpixelLSC object for the input image. It sets the parameters of superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future computing iterations over the given image. An example of LSC is ilustrated in the following picture. For enanched results it is recommended for color images to preprocess image with little gaussian blur with a small 3 x 3 kernel and additional conversion into CieLAB color space.

@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelLSC createSuperpixelLSC(@ByVal Mat image)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelLSC createSuperpixelLSC(@ByVal UMat image, int region_size, float ratio)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelLSC createSuperpixelLSC(@ByVal UMat image)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelLSC createSuperpixelLSC(@ByVal GpuMat image, int region_size, float ratio)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static SuperpixelLSC createSuperpixelLSC(@ByVal GpuMat image)
@Namespace(value="cv::ximgproc") public static void GradientPaillouY(@ByVal Mat op, @ByVal Mat _dst, double alpha, double omega)
/** \brief Applies Paillou filter to an image. For more details about this implementation, please see \cite paillou1997detecting
op
- Source CV_8U(S) or CV_16U(S), 1-channel or 3-channels image._dst
- result CV_32F image with same number of channel than op.omega
- double see paperalpha
- double see paperGradientPaillouX, GradientPaillouY
@Namespace(value="cv::ximgproc") public static void GradientPaillouY(@ByVal UMat op, @ByVal UMat _dst, double alpha, double omega)
@Namespace(value="cv::ximgproc") public static void GradientPaillouY(@ByVal GpuMat op, @ByVal GpuMat _dst, double alpha, double omega)
@Namespace(value="cv::ximgproc") public static void GradientPaillouX(@ByVal Mat op, @ByVal Mat _dst, double alpha, double omega)
@Namespace(value="cv::ximgproc") public static void GradientPaillouX(@ByVal UMat op, @ByVal UMat _dst, double alpha, double omega)
@Namespace(value="cv::ximgproc") public static void GradientPaillouX(@ByVal GpuMat op, @ByVal GpuMat _dst, double alpha, double omega)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastLineDetector createFastLineDetector(int length_threshold, float distance_threshold, double canny_th1, double canny_th2, int canny_aperture_size, @Cast(value="bool") boolean do_merge)
length_threshold
- Segment shorter than this will be discardeddistance_threshold
- A point placed from a hypothesis line
segment farther than this will be regarded as an outliercanny_th1
- First threshold for hysteresis procedure in Canny()canny_th2
- Second threshold for hysteresis procedure in Canny()canny_aperture_size
- Aperturesize for the sobel operator in Canny().
If zero, Canny() is not applied and the input image is taken as an edge image.do_merge
- If true, incremental merging of segments will be performed@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static FastLineDetector createFastLineDetector()
@Namespace(value="cv::ximgproc") public static void GradientDericheY(@ByVal Mat op, @ByVal Mat dst, double alpha, double omega)
/** \brief Applies Y Deriche filter to an image. For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
op
- Source 8-bit or 16bit image, 1-channel or 3-channel image.dst
- result CV_32FC image with same number of channel than _op.alpha
- double see paperomega
- double see paper@Namespace(value="cv::ximgproc") public static void GradientDericheY(@ByVal UMat op, @ByVal UMat dst, double alpha, double omega)
@Namespace(value="cv::ximgproc") public static void GradientDericheY(@ByVal GpuMat op, @ByVal GpuMat dst, double alpha, double omega)
@Namespace(value="cv::ximgproc") public static void GradientDericheX(@ByVal Mat op, @ByVal Mat dst, double alpha, double omega)
op
- Source 8-bit or 16bit image, 1-channel or 3-channel image.dst
- result CV_32FC image with same number of channel than _op.alpha
- double see paperomega
- double see paper@Namespace(value="cv::ximgproc") public static void GradientDericheX(@ByVal UMat op, @ByVal UMat dst, double alpha, double omega)
@Namespace(value="cv::ximgproc") public static void GradientDericheX(@ByVal GpuMat op, @ByVal GpuMat dst, double alpha, double omega)
@Namespace(value="cv::ximgproc") @ByVal @Cast(value="cv::Matx23d*") public static DoublePointer PeiLinNormalization(@ByVal Mat I)
/**
\brief Calculates an affine transformation that normalize given image using Pei&Lin Normalization.
Assume given image I=T(\bar{I})
where \bar{I}
is a normalized image and T
is an affine transformation distorting this image by translation, rotation, scaling and skew.
The function returns an affine transformation matrix corresponding to the transformation T^{-1}
described in [PeiLin95].
For more details about this implementation, please see
[PeiLin95] Soo-Chang Pei and Chao-Nan Lin. Image normalization for pattern recognition. Image and Vision Computing, Vol. 13, N.10, pp. 711-723, 1995.
I
- Given transformed image.@Namespace(value="cv::ximgproc") @ByVal @Cast(value="cv::Matx23d*") public static DoublePointer PeiLinNormalization(@ByVal UMat I)
@Namespace(value="cv::ximgproc") @ByVal @Cast(value="cv::Matx23d*") public static DoublePointer PeiLinNormalization(@ByVal GpuMat I)
@Namespace(value="cv::ximgproc") public static void PeiLinNormalization(@ByVal Mat I, @ByVal Mat T)
@Namespace(value="cv::ximgproc") public static void PeiLinNormalization(@ByVal UMat I, @ByVal UMat T)
@Namespace(value="cv::ximgproc") public static void PeiLinNormalization(@ByVal GpuMat I, @ByVal GpuMat T)
@Namespace(value="cv::ximgproc") public static void fourierDescriptor(@ByVal Mat src, @ByVal Mat dst, int nbElt, int nbFD)
src
- contour type vectordst
- Mat of type CV_64FC2 and nbElt rows A VERIFIERnbElt
- number of rows in dst or getOptimalDFTSize rows if nbElt=-1nbFD
- number of FD return in dst dst = [FD(1...nbFD/2) FD(nbFD/2-nbElt+1...:nbElt)]@Namespace(value="cv::ximgproc") public static void fourierDescriptor(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv::ximgproc") public static void fourierDescriptor(@ByVal UMat src, @ByVal UMat dst, int nbElt, int nbFD)
@Namespace(value="cv::ximgproc") public static void fourierDescriptor(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static void fourierDescriptor(@ByVal GpuMat src, @ByVal GpuMat dst, int nbElt, int nbFD)
@Namespace(value="cv::ximgproc") public static void fourierDescriptor(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") public static void transformFD(@ByVal Mat src, @ByVal Mat t, @ByVal Mat dst, @Cast(value="bool") boolean fdContour)
src
- contour or Fourier Descriptors if fd is truet
- transform Mat given by estimateTransformationdst
- Mat of type CV_64FC2 and nbElt rowsfdContour
- true src are Fourier Descriptors. fdContour false src is a contour@Namespace(value="cv::ximgproc") public static void transformFD(@ByVal Mat src, @ByVal Mat t, @ByVal Mat dst)
@Namespace(value="cv::ximgproc") public static void transformFD(@ByVal UMat src, @ByVal UMat t, @ByVal UMat dst, @Cast(value="bool") boolean fdContour)
@Namespace(value="cv::ximgproc") public static void transformFD(@ByVal UMat src, @ByVal UMat t, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static void transformFD(@ByVal GpuMat src, @ByVal GpuMat t, @ByVal GpuMat dst, @Cast(value="bool") boolean fdContour)
@Namespace(value="cv::ximgproc") public static void transformFD(@ByVal GpuMat src, @ByVal GpuMat t, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") public static void contourSampling(@ByVal Mat src, @ByVal Mat out, int nbElt)
src
- contour type vectorout
- Mat of type CV_64FC2 and nbElt rowsnbElt
- number of points in out contour@Namespace(value="cv::ximgproc") public static void contourSampling(@ByVal UMat src, @ByVal UMat out, int nbElt)
@Namespace(value="cv::ximgproc") public static void contourSampling(@ByVal GpuMat src, @ByVal GpuMat out, int nbElt)
@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static ContourFitting createContourFitting(int ctr, int fd)
ctr
- number of Fourier descriptors equal to number of contour points after resampling.fd
- Contour defining second shape (Target).@Namespace(value="cv::ximgproc") @opencv_core.Ptr public static ContourFitting createContourFitting()
@Namespace(value="cv::ximgproc") public static void BrightEdges(@ByRef Mat _original, @ByRef Mat _edgeview, int contrast, int shortrange, int longrange)
@Namespace(value="cv::ximgproc") public static void BrightEdges(@ByRef Mat _original, @ByRef Mat _edgeview)
@Namespace(value="cv::ximgproc::rl") public static void threshold(@ByVal Mat src, @ByVal Mat rlDest, double thresh, int type)
/** \brief Applies a fixed-level threshold to each array element.
src
- input array (single-channel).rlDest
- resulting run length encoded image.thresh
- threshold value.type
- thresholding type (only cv::THRESH_BINARY and cv::THRESH_BINARY_INV are supported)@Namespace(value="cv::ximgproc::rl") public static void threshold(@ByVal UMat src, @ByVal UMat rlDest, double thresh, int type)
@Namespace(value="cv::ximgproc::rl") public static void threshold(@ByVal GpuMat src, @ByVal GpuMat rlDest, double thresh, int type)
@Namespace(value="cv::ximgproc::rl") public static void dilate(@ByVal Mat rlSrc, @ByVal Mat rlDest, @ByVal Mat rlKernel, @ByVal(nullValue="cv::Point(0, 0)") Point anchor)
rlSrc
- input imagerlDest
- resultrlKernel
- kernelanchor
- position of the anchor within the element; default value (0, 0)
is usually the element center.@Namespace(value="cv::ximgproc::rl") public static void dilate(@ByVal Mat rlSrc, @ByVal Mat rlDest, @ByVal Mat rlKernel)
@Namespace(value="cv::ximgproc::rl") public static void dilate(@ByVal UMat rlSrc, @ByVal UMat rlDest, @ByVal UMat rlKernel, @ByVal(nullValue="cv::Point(0, 0)") Point anchor)
@Namespace(value="cv::ximgproc::rl") public static void dilate(@ByVal UMat rlSrc, @ByVal UMat rlDest, @ByVal UMat rlKernel)
@Namespace(value="cv::ximgproc::rl") public static void dilate(@ByVal GpuMat rlSrc, @ByVal GpuMat rlDest, @ByVal GpuMat rlKernel, @ByVal(nullValue="cv::Point(0, 0)") Point anchor)
@Namespace(value="cv::ximgproc::rl") public static void dilate(@ByVal GpuMat rlSrc, @ByVal GpuMat rlDest, @ByVal GpuMat rlKernel)
@Namespace(value="cv::ximgproc::rl") public static void erode(@ByVal Mat rlSrc, @ByVal Mat rlDest, @ByVal Mat rlKernel, @Cast(value="bool") boolean bBoundaryOn, @ByVal(nullValue="cv::Point(0, 0)") Point anchor)
rlSrc
- input imagerlDest
- resultrlKernel
- kernelbBoundaryOn
- indicates whether pixel outside the image boundary are assumed to be on
(True: works in the same way as the default of cv::erode, False: is a little faster)anchor
- position of the anchor within the element; default value (0, 0)
is usually the element center.@Namespace(value="cv::ximgproc::rl") public static void erode(@ByVal Mat rlSrc, @ByVal Mat rlDest, @ByVal Mat rlKernel)
@Namespace(value="cv::ximgproc::rl") public static void erode(@ByVal UMat rlSrc, @ByVal UMat rlDest, @ByVal UMat rlKernel, @Cast(value="bool") boolean bBoundaryOn, @ByVal(nullValue="cv::Point(0, 0)") Point anchor)
@Namespace(value="cv::ximgproc::rl") public static void erode(@ByVal UMat rlSrc, @ByVal UMat rlDest, @ByVal UMat rlKernel)
@Namespace(value="cv::ximgproc::rl") public static void erode(@ByVal GpuMat rlSrc, @ByVal GpuMat rlDest, @ByVal GpuMat rlKernel, @Cast(value="bool") boolean bBoundaryOn, @ByVal(nullValue="cv::Point(0, 0)") Point anchor)
@Namespace(value="cv::ximgproc::rl") public static void erode(@ByVal GpuMat rlSrc, @ByVal GpuMat rlDest, @ByVal GpuMat rlKernel)
@Namespace(value="cv::ximgproc::rl") @ByVal public static Mat getStructuringElement(int shape, @ByVal Size ksize)
shape
- Element shape that can be one of cv::MorphShapesksize
- Size of the structuring element.@Namespace(value="cv::ximgproc::rl") public static void paint(@ByVal Mat image, @ByVal Mat rlSrc, @Const @ByRef Scalar value)
image
- image to paint into (currently only single channel images).rlSrc
- run length encoded imagevalue
- all foreground pixel of the binary image are set to this value@Namespace(value="cv::ximgproc::rl") public static void paint(@ByVal UMat image, @ByVal UMat rlSrc, @Const @ByRef Scalar value)
@Namespace(value="cv::ximgproc::rl") public static void paint(@ByVal GpuMat image, @ByVal GpuMat rlSrc, @Const @ByRef Scalar value)
@Namespace(value="cv::ximgproc::rl") @Cast(value="bool") public static boolean isRLMorphologyPossible(@ByVal Mat rlStructuringElement)
rlStructuringElement
- mask to be tested@Namespace(value="cv::ximgproc::rl") @Cast(value="bool") public static boolean isRLMorphologyPossible(@ByVal UMat rlStructuringElement)
@Namespace(value="cv::ximgproc::rl") @Cast(value="bool") public static boolean isRLMorphologyPossible(@ByVal GpuMat rlStructuringElement)
@Namespace(value="cv::ximgproc::rl") public static void createRLEImage(@Cast(value="const std::vector<cv::Point3i>*") @ByRef Point3iVector runs, @ByVal Mat res, @ByVal(nullValue="cv::Size(0, 0)") Size size)
runs
- vector of runsres
- resultsize
- image size (to be used if an "on" boundary should be used in erosion, using the default
means that the size is computed from the extension of the input)@Namespace(value="cv::ximgproc::rl") public static void createRLEImage(@Cast(value="const std::vector<cv::Point3i>*") @ByRef Point3iVector runs, @ByVal Mat res)
@Namespace(value="cv::ximgproc::rl") public static void createRLEImage(@Cast(value="const std::vector<cv::Point3i>*") @ByRef Point3iVector runs, @ByVal UMat res, @ByVal(nullValue="cv::Size(0, 0)") Size size)
@Namespace(value="cv::ximgproc::rl") public static void createRLEImage(@Cast(value="const std::vector<cv::Point3i>*") @ByRef Point3iVector runs, @ByVal UMat res)
@Namespace(value="cv::ximgproc::rl") public static void createRLEImage(@Cast(value="const std::vector<cv::Point3i>*") @ByRef Point3iVector runs, @ByVal GpuMat res, @ByVal(nullValue="cv::Size(0, 0)") Size size)
@Namespace(value="cv::ximgproc::rl") public static void createRLEImage(@Cast(value="const std::vector<cv::Point3i>*") @ByRef Point3iVector runs, @ByVal GpuMat res)
@Namespace(value="cv::ximgproc::rl") public static void morphologyEx(@ByVal Mat rlSrc, @ByVal Mat rlDest, int op, @ByVal Mat rlKernel, @Cast(value="bool") boolean bBoundaryOnForErosion, @ByVal(nullValue="cv::Point(0,0)") Point anchor)
rlSrc
- input imagerlDest
- resultop
- all operations supported by cv::morphologyEx (except cv::MORPH_HITMISS)rlKernel
- kernelbBoundaryOnForErosion
- indicates whether pixel outside the image boundary are assumed
to be on for erosion operations (True: works in the same way as the default of cv::erode,
False: is a little faster)anchor
- position of the anchor within the element; default value (0, 0) is usually the element center.@Namespace(value="cv::ximgproc::rl") public static void morphologyEx(@ByVal Mat rlSrc, @ByVal Mat rlDest, int op, @ByVal Mat rlKernel)
@Namespace(value="cv::ximgproc::rl") public static void morphologyEx(@ByVal UMat rlSrc, @ByVal UMat rlDest, int op, @ByVal UMat rlKernel, @Cast(value="bool") boolean bBoundaryOnForErosion, @ByVal(nullValue="cv::Point(0,0)") Point anchor)
@Namespace(value="cv::ximgproc::rl") public static void morphologyEx(@ByVal UMat rlSrc, @ByVal UMat rlDest, int op, @ByVal UMat rlKernel)
@Namespace(value="cv::ximgproc::rl") public static void morphologyEx(@ByVal GpuMat rlSrc, @ByVal GpuMat rlDest, int op, @ByVal GpuMat rlKernel, @Cast(value="bool") boolean bBoundaryOnForErosion, @ByVal(nullValue="cv::Point(0,0)") Point anchor)
@Namespace(value="cv::ximgproc::rl") public static void morphologyEx(@ByVal GpuMat rlSrc, @ByVal GpuMat rlDest, int op, @ByVal GpuMat rlKernel)
@Namespace(value="cv::ximgproc") public static void edgePreservingFilter(@ByVal Mat src, @ByVal Mat dst, int d, double threshold)
/** \brief Smoothes an image using the Edge-Preserving filter. The function smoothes Gaussian noise as well as salt & pepper noise. For more details about this implementation, please see [ReiWoe18] Reich, S. and Wörgötter, F. and Dellen, B. (2018). A Real-Time Edge-Preserving Denoising Filter. Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP): Visapp, 85-94, 4. DOI: 10.5220/0006509000850094.
src
- Source 8-bit 3-channel image.dst
- Destination image of the same size and type as src.d
- Diameter of each pixel neighborhood that is used during filtering. Must be greater or equal 3.threshold
- Threshold, which distinguishes between noise, outliers, and data.@Namespace(value="cv::ximgproc") public static void edgePreservingFilter(@ByVal UMat src, @ByVal UMat dst, int d, double threshold)
@Namespace(value="cv::ximgproc") public static void edgePreservingFilter(@ByVal GpuMat src, @ByVal GpuMat dst, int d, double threshold)
@Namespace(value="cv::ximgproc") public static void createQuaternionImage(@ByVal Mat img, @ByVal Mat qimg)
/** \brief creates a quaternion image.
img
- Source 8-bit, 32-bit or 64-bit image, with 3-channel image.qimg
- result CV_64FC4 a quaternion image( 4 chanels zero channel and B,G,R).@Namespace(value="cv::ximgproc") public static void createQuaternionImage(@ByVal UMat img, @ByVal UMat qimg)
@Namespace(value="cv::ximgproc") public static void createQuaternionImage(@ByVal GpuMat img, @ByVal GpuMat qimg)
@Namespace(value="cv::ximgproc") public static void qconj(@ByVal Mat qimg, @ByVal Mat qcimg)
qimg
- quaternion image.qcimg
- conjugate of qimg@Namespace(value="cv::ximgproc") public static void qconj(@ByVal UMat qimg, @ByVal UMat qcimg)
@Namespace(value="cv::ximgproc") public static void qconj(@ByVal GpuMat qimg, @ByVal GpuMat qcimg)
@Namespace(value="cv::ximgproc") public static void qunitary(@ByVal Mat qimg, @ByVal Mat qnimg)
qimg
- quaternion image.qnimg
- conjugate of qimg@Namespace(value="cv::ximgproc") public static void qunitary(@ByVal UMat qimg, @ByVal UMat qnimg)
@Namespace(value="cv::ximgproc") public static void qunitary(@ByVal GpuMat qimg, @ByVal GpuMat qnimg)
@Namespace(value="cv::ximgproc") public static void qmultiply(@ByVal Mat src1, @ByVal Mat src2, @ByVal Mat dst)
src1
- quaternion image.src2
- quaternion image.dst
- product dst(I)=src1(I) . src2(I)@Namespace(value="cv::ximgproc") public static void qmultiply(@ByVal UMat src1, @ByVal UMat src2, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static void qmultiply(@ByVal GpuMat src1, @ByVal GpuMat src2, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") public static void qdft(@ByVal Mat img, @ByVal Mat qimg, int flags, @Cast(value="bool") boolean sideLeft)
img
- quaternion image.qimg
- quaternion image in dual space.flags
- quaternion image in dual space. only DFT_INVERSE flags is supportedsideLeft
- true the hypercomplex exponential is to be multiplied on the left (false on the right ).@Namespace(value="cv::ximgproc") public static void qdft(@ByVal UMat img, @ByVal UMat qimg, int flags, @Cast(value="bool") boolean sideLeft)
@Namespace(value="cv::ximgproc") public static void qdft(@ByVal GpuMat img, @ByVal GpuMat qimg, int flags, @Cast(value="bool") boolean sideLeft)
@Namespace(value="cv::ximgproc") public static void colorMatchTemplate(@ByVal Mat img, @ByVal Mat templ, @ByVal Mat result)
img
- Image where the search is running. It must be 3 channels imagetempl
- Searched template. It must be not greater than the source image and have 3 channelsresult
- Map of comparison results. It must be single-channel 64-bit floating-point@Namespace(value="cv::ximgproc") public static void colorMatchTemplate(@ByVal UMat img, @ByVal UMat templ, @ByVal UMat result)
@Namespace(value="cv::ximgproc") public static void colorMatchTemplate(@ByVal GpuMat img, @ByVal GpuMat templ, @ByVal GpuMat result)
@Namespace(value="cv::ximgproc") public static void RadonTransform(@ByVal Mat src, @ByVal Mat dst, double theta, double start_angle, double end_angle, @Cast(value="bool") boolean crop, @Cast(value="bool") boolean norm)
src
- The source (input) image.dst
- The destination image, result of transformation.theta
- Angle resolution of the transform in degrees.start_angle
- Start angle of the transform in degrees.end_angle
- End angle of the transform in degrees.crop
- Crop the source image into a circle.norm
- Normalize the output Mat to grayscale and convert type to CV_8U
This function calculates the Radon Transform of a given image in any range.
See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
If the input type is CV_8U, the output will be CV_32S.
If the input type is CV_32F or CV_64F, the output will be CV_64F
The output size will be num_of_integral x src_diagonal_length.
If crop is selected, the input image will be crop into square then circle,
and output size will be num_of_integral x min_edge.@Namespace(value="cv::ximgproc") public static void RadonTransform(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv::ximgproc") public static void RadonTransform(@ByVal UMat src, @ByVal UMat dst, double theta, double start_angle, double end_angle, @Cast(value="bool") boolean crop, @Cast(value="bool") boolean norm)
@Namespace(value="cv::ximgproc") public static void RadonTransform(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv::ximgproc") public static void RadonTransform(@ByVal GpuMat src, @ByVal GpuMat dst, double theta, double start_angle, double end_angle, @Cast(value="bool") boolean crop, @Cast(value="bool") boolean norm)
@Namespace(value="cv::ximgproc") public static void RadonTransform(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv::ximgproc") public static void findEllipses(@ByVal Mat image, @ByVal Mat ellipses, float scoreThreshold, float reliabilityThreshold, float centerDistanceThreshold)
/** \brief Finds ellipses fastly in an image using projective invariant pruning. The function detects ellipses in images using projective invariant pruning. For more details about this implementation, please see \cite jia2017fast Jia, Qi et al, (2017). A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
image
- input image, could be gray or color.ellipses
- output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.scoreThreshold
- float, the threshold of ellipse score.reliabilityThreshold
- float, the threshold of reliability.centerDistanceThreshold
- float, the threshold of center distance.@Namespace(value="cv::ximgproc") public static void findEllipses(@ByVal Mat image, @ByVal Mat ellipses)
@Namespace(value="cv::ximgproc") public static void findEllipses(@ByVal UMat image, @ByVal UMat ellipses, float scoreThreshold, float reliabilityThreshold, float centerDistanceThreshold)
@Namespace(value="cv::ximgproc") public static void findEllipses(@ByVal UMat image, @ByVal UMat ellipses)
@Namespace(value="cv::ximgproc") public static void findEllipses(@ByVal GpuMat image, @ByVal GpuMat ellipses, float scoreThreshold, float reliabilityThreshold, float centerDistanceThreshold)
Copyright © 2024. All rights reserved.