@Namespace(value="cv::face") @Properties(inherit=opencv_face.class) public class FacemarkKazemi extends Facemark
Modifier and Type | Class and Description |
---|---|
static class |
FacemarkKazemi.Params |
Pointer.CustomDeallocator, Pointer.Deallocator, Pointer.NativeDeallocator, Pointer.ReferenceCounter
Constructor and Description |
---|
FacemarkKazemi(Algorithm pointer)
Downcast constructor.
|
FacemarkKazemi(Pointer p)
Pointer cast constructor.
|
Modifier and Type | Method and Description |
---|---|
static FacemarkKazemi |
create() |
static FacemarkKazemi |
create(FacemarkKazemi.Params parameters) |
boolean |
getFaces(Mat image,
RectVector faces)
get faces using the custom detector
|
boolean |
setFaceDetector(Pointer f,
Pointer userData)
set the custom face detector
|
boolean |
training(MatVector images,
Point2fVectorVector landmarks,
BytePointer configfile,
Size scale) |
boolean |
training(MatVector images,
Point2fVectorVector landmarks,
BytePointer configfile,
Size scale,
BytePointer modelFilename)
\brief This function is used to train the model using gradient boosting to get a cascade of regressors
which can then be used to predict shape.
|
boolean |
training(MatVector images,
Point2fVectorVector landmarks,
String configfile,
Size scale) |
boolean |
training(MatVector images,
Point2fVectorVector landmarks,
String configfile,
Size scale,
String modelFilename) |
asAlgorithm, asAlgorithm, fit, loadModel, loadModel
clear, empty, getDefaultName, getPointer, position, read, save, save, write, write, write
address, asBuffer, asByteBuffer, availablePhysicalBytes, calloc, capacity, capacity, close, deallocate, deallocate, deallocateReferences, deallocator, deallocator, equals, fill, formatBytes, free, getDirectBufferAddress, getPointer, getPointer, getPointer, hashCode, interruptDeallocatorThread, isNull, isNull, limit, limit, malloc, maxBytes, maxPhysicalBytes, memchr, memcmp, memcpy, memmove, memset, offsetAddress, offsetof, offsetof, parseBytes, physicalBytes, physicalBytesInaccurate, position, put, realloc, referenceCount, releaseReference, retainReference, setNull, sizeof, sizeof, toString, totalBytes, totalCount, totalPhysicalBytes, withDeallocator, zero
public FacemarkKazemi(Pointer p)
Pointer(Pointer)
.public FacemarkKazemi(Algorithm pointer)
@opencv_core.Ptr public static FacemarkKazemi create(@Const @ByRef(nullValue="cv::face::FacemarkKazemi::Params()") FacemarkKazemi.Params parameters)
@opencv_core.Ptr public static FacemarkKazemi create()
@Cast(value="bool") public boolean training(@ByRef MatVector images, @ByRef Point2fVectorVector landmarks, @StdString BytePointer configfile, @ByVal Size scale, @StdString BytePointer modelFilename)
images
- A vector of type cv::Mat which stores the images which are used in training samples.landmarks
- A vector of vectors of type cv::Point2f which stores the landmarks detected in a particular image.scale
- A size of type cv::Size to which all images and landmarks have to be scaled to.configfile
- A variable of type std::string which stores the name of the file storing parameters for training the model.modelFilename
- A variable of type std::string which stores the name of the trained model file that has to be saved.@Cast(value="bool") public boolean training(@ByRef MatVector images, @ByRef Point2fVectorVector landmarks, @StdString BytePointer configfile, @ByVal Size scale)
@Cast(value="bool") public boolean training(@ByRef MatVector images, @ByRef Point2fVectorVector landmarks, @StdString String configfile, @ByVal Size scale, @StdString String modelFilename)
@Cast(value="bool") public boolean training(@ByRef MatVector images, @ByRef Point2fVectorVector landmarks, @StdString String configfile, @ByVal Size scale)
@Cast(value="bool") public boolean setFaceDetector(@Cast(value="bool (*)(cv::InputArray, cv::OutputArray, void*)") Pointer f, Pointer userData)
Copyright © 2024. All rights reserved.