@Namespace(value="cv::face") @Properties(inherit=opencv_face.class) public class FacemarkKazemi extends Facemark
| Modifier and Type | Class and Description |
|---|---|
static class |
FacemarkKazemi.Params |
Pointer.CustomDeallocator, Pointer.Deallocator, Pointer.NativeDeallocator, Pointer.ReferenceCounter| Constructor and Description |
|---|
FacemarkKazemi(Algorithm pointer)
Downcast constructor.
|
FacemarkKazemi(Pointer p)
Pointer cast constructor.
|
| Modifier and Type | Method and Description |
|---|---|
static FacemarkKazemi |
create() |
static FacemarkKazemi |
create(FacemarkKazemi.Params parameters) |
boolean |
getFaces(Mat image,
RectVector faces)
get faces using the custom detector
|
boolean |
setFaceDetector(Pointer f,
Pointer userData)
set the custom face detector
|
boolean |
training(MatVector images,
Point2fVectorVector landmarks,
BytePointer configfile,
Size scale) |
boolean |
training(MatVector images,
Point2fVectorVector landmarks,
BytePointer configfile,
Size scale,
BytePointer modelFilename)
\brief This function is used to train the model using gradient boosting to get a cascade of regressors
which can then be used to predict shape.
|
boolean |
training(MatVector images,
Point2fVectorVector landmarks,
String configfile,
Size scale) |
boolean |
training(MatVector images,
Point2fVectorVector landmarks,
String configfile,
Size scale,
String modelFilename) |
asAlgorithm, asAlgorithm, fit, loadModel, loadModelclear, empty, getDefaultName, getPointer, position, read, save, save, write, write, writeaddress, asBuffer, asByteBuffer, availablePhysicalBytes, calloc, capacity, capacity, close, deallocate, deallocate, deallocateReferences, deallocator, deallocator, equals, fill, formatBytes, free, getDirectBufferAddress, getPointer, getPointer, getPointer, hashCode, interruptDeallocatorThread, isNull, isNull, limit, limit, malloc, maxBytes, maxPhysicalBytes, memchr, memcmp, memcpy, memmove, memset, offsetAddress, offsetof, offsetof, parseBytes, physicalBytes, physicalBytesInaccurate, position, put, realloc, referenceCount, releaseReference, retainReference, setNull, sizeof, sizeof, toString, totalBytes, totalCount, totalPhysicalBytes, withDeallocator, zeropublic FacemarkKazemi(Pointer p)
Pointer(Pointer).public FacemarkKazemi(Algorithm pointer)
@opencv_core.Ptr public static FacemarkKazemi create(@Const @ByRef(nullValue="cv::face::FacemarkKazemi::Params()") FacemarkKazemi.Params parameters)
@opencv_core.Ptr public static FacemarkKazemi create()
@Cast(value="bool") public boolean training(@ByRef MatVector images, @ByRef Point2fVectorVector landmarks, @StdString BytePointer configfile, @ByVal Size scale, @StdString BytePointer modelFilename)
images - A vector of type cv::Mat which stores the images which are used in training samples.landmarks - A vector of vectors of type cv::Point2f which stores the landmarks detected in a particular image.scale - A size of type cv::Size to which all images and landmarks have to be scaled to.configfile - A variable of type std::string which stores the name of the file storing parameters for training the model.modelFilename - A variable of type std::string which stores the name of the trained model file that has to be saved.@Cast(value="bool") public boolean training(@ByRef MatVector images, @ByRef Point2fVectorVector landmarks, @StdString BytePointer configfile, @ByVal Size scale)
@Cast(value="bool") public boolean training(@ByRef MatVector images, @ByRef Point2fVectorVector landmarks, @StdString String configfile, @ByVal Size scale, @StdString String modelFilename)
@Cast(value="bool") public boolean training(@ByRef MatVector images, @ByRef Point2fVectorVector landmarks, @StdString String configfile, @ByVal Size scale)
@Cast(value="bool") public boolean setFaceDetector(@Cast(value="bool (*)(cv::InputArray, cv::OutputArray, void*)") Pointer f, Pointer userData)
Copyright © 2025. All rights reserved.