@Name(value="torch::nn::detail::RNNImplBase<torch::nn::LSTMImpl>") @NoOffset @Properties(inherit=torch.class) public class LSTMImplBase extends LSTMImplCloneable
Pointer.CustomDeallocator, Pointer.Deallocator, Pointer.NativeDeallocator, Pointer.ReferenceCounter| Constructor and Description |
|---|
LSTMImplBase(Pointer p)
Pointer cast constructor.
|
LSTMImplBase(RNNOptionsBase options_) |
| Modifier and Type | Method and Description |
|---|---|
TensorVector |
all_weights() |
void |
flatten_parameters()
Modifies the internal storage of weights for optimization purposes.
|
RNNOptionsBase |
options_base()
The RNN's options.
|
LSTMImplBase |
options_base(RNNOptionsBase setter) |
void |
pretty_print(Pointer stream)
Pretty prints the RNN module into the given
stream. |
void |
reset_parameters() |
void |
reset()
Initializes the parameters of the RNN module.
|
void |
to(Device device) |
void |
to(Device device,
boolean non_blocking)
Recursively moves all parameters to the given device.
|
void |
to(Device device,
torch.ScalarType dtype) |
void |
to(Device device,
torch.ScalarType dtype,
boolean non_blocking)
Overrides
nn::Module::to() to call flatten_parameters() after the
original operation. |
void |
to(torch.ScalarType dtype) |
void |
to(torch.ScalarType dtype,
boolean non_blocking)
Recursively casts all parameters to the given dtype.
|
clone, cloneapply, apply, apply, apply, apply, apply, apply, apply, asAdaptiveAvgPool1d, asAdaptiveAvgPool2d, asAdaptiveAvgPool3d, asAdaptiveLogSoftmaxWithLoss, asAdaptiveMaxPool1d, asAdaptiveMaxPool2d, asAdaptiveMaxPool3d, asAlphaDropout, asAvgPool1d, asAvgPool2d, asAvgPool3d, asBatchNorm1d, asBatchNorm2d, asBatchNorm3d, asBCELoss, asBCEWithLogitsLoss, asBilinear, asCELU, asConstantPad1d, asConstantPad2d, asConstantPad3d, asConv1d, asConv2d, asConv3d, asConvTranspose1d, asConvTranspose2d, asConvTranspose3d, asCosineEmbeddingLoss, asCosineSimilarity, asCrossEntropyLoss, asCrossMapLRN2d, asCTCLoss, asDropout, asDropout2d, asDropout3d, asELU, asEmbedding, asEmbeddingBag, asFeatureAlphaDropout, asFlatten, asFold, asFractionalMaxPool2d, asFractionalMaxPool3d, asGELU, asGLU, asGroupNorm, asGRU, asGRUCell, asHardshrink, asHardtanh, asHingeEmbeddingLoss, asHuberLoss, asIdentity, asInstanceNorm1d, asInstanceNorm2d, asInstanceNorm3d, asKLDivLoss, asL1Loss, asLayerNorm, asLeakyReLU, asLinear, asLocalResponseNorm, asLogSigmoid, asLogSoftmax, asLPPool1d, asLPPool2d, asLPPool3d, asLSTM, asLSTMCell, asMarginRankingLoss, asMaxPool1d, asMaxPool2d, asMaxPool3d, asMaxUnpool1d, asMaxUnpool2d, asMaxUnpool3d, asMish, asModuleDict, asModuleList, asMSELoss, asMultiheadAttention, asMultiLabelMarginLoss, asMultiLabelSoftMarginLoss, asMultiMarginLoss, asNLLLoss, asPairwiseDistance, asParameterDict, asParameterList, asPixelShuffle, asPixelUnshuffle, asPoissonNLLLoss, asPReLU, asReflectionPad1d, asReflectionPad2d, asReflectionPad3d, asReLU, asReLU6, asReplicationPad1d, asReplicationPad2d, asReplicationPad3d, asRNN, asRNNCell, asRReLU, asSELU, asSequential, asSigmoid, asSiLU, asSmoothL1Loss, asSoftMarginLoss, asSoftmax, asSoftmax2d, asSoftmin, asSoftplus, asSoftshrink, asSoftsign, asTanh, asTanhshrink, asThreshold, asTransformer, asTransformerDecoder, asTransformerDecoderLayer, asTransformerEncoder, asTransformerEncoderLayer, asTripletMarginLoss, asTripletMarginWithDistanceLoss, asUnflatten, asUnfold, asUpsample, asZeroPad1d, asZeroPad2d, asZeroPad3d, buffers, buffers, children, eval, is_serializable, is_training, load, modules, modules, name, named_buffers, named_buffers, named_children, named_modules, named_modules, named_modules, named_parameters, named_parameters, parameters, parameters, put, register_buffer, register_buffer, register_module, register_module, register_parameter, register_parameter, register_parameter, register_parameter, save, shiftLeft, train, unregister_module, unregister_module, zero_gradaddress, asBuffer, asByteBuffer, availablePhysicalBytes, calloc, capacity, capacity, close, deallocate, deallocate, deallocateReferences, deallocator, deallocator, equals, fill, formatBytes, free, getDirectBufferAddress, getPointer, getPointer, getPointer, getPointer, hashCode, interruptDeallocatorThread, isNull, isNull, limit, limit, malloc, maxBytes, maxPhysicalBytes, memchr, memcmp, memcpy, memmove, memset, offsetAddress, offsetof, offsetof, parseBytes, physicalBytes, physicalBytesInaccurate, position, position, put, realloc, referenceCount, releaseReference, retainReference, setNull, sizeof, sizeof, toString, totalBytes, totalCount, totalPhysicalBytes, withDeallocator, zeropublic LSTMImplBase(Pointer p)
Pointer(Pointer).public LSTMImplBase(@Const @ByRef RNNOptionsBase options_)
public void reset()
reset in class LSTMImplCloneablepublic void reset_parameters()
public void to(@ByVal Device device, torch.ScalarType dtype, @Cast(value="bool") boolean non_blocking)
nn::Module::to() to call flatten_parameters() after the
original operation.public void to(@ByVal Device device, torch.ScalarType dtype)
public void to(torch.ScalarType dtype, @Cast(value="bool") boolean non_blocking)
Modulenon_blocking is true and the source is in pinned memory and
destination is on the GPU or vice versa, the copy is performed
asynchronously with respect to the host. Otherwise, the argument has no
effect.public void to(torch.ScalarType dtype)
public void to(@ByVal Device device, @Cast(value="bool") boolean non_blocking)
Modulenon_blocking is true and the source is in pinned memory and
destination is on the GPU or vice versa, the copy is performed
asynchronously with respect to the host. Otherwise, the argument has no
effect.public void pretty_print(@Cast(value="std::ostream*") @ByRef Pointer stream)
stream.pretty_print in class Modulepublic void flatten_parameters()
forward() methods. It is
called once upon construction, inside reset().@ByVal public TensorVector all_weights()
@ByRef public RNNOptionsBase options_base()
public LSTMImplBase options_base(RNNOptionsBase setter)
Copyright © 2025. All rights reserved.