public <T> RandomShuffle<T> randomShuffle(Operand<T> value, RandomShuffle.Options... options)
RandomShuffle operationvalue - The tensor to be shuffled.options - carries optional attributes valuesRandomShufflepublic <T extends Number> Multinomial<Long> multinomial(Operand<T> logits, Operand<Integer> numSamples, Multinomial.Options... options)
Multinomial operationlogits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]`numSamples - 0-D. Number of independent samples to draw for each row slice.options - carries optional attributes valuesMultinomialpublic <T extends Number,U extends Number> StatelessRandomUniform<Float> statelessRandomUniform(Operand<T> shape, Operand<U> seed)
StatelessRandomUniform operationshape - The shape of the output tensor.seed - 2 seeds (shape [2]).StatelessRandomUniformpublic <V extends Number,T extends Number,U extends Number> StatelessRandomNormal<V> statelessRandomNormal(Operand<T> shape, Operand<U> seed, Class<V> dtype)
StatelessRandomNormal operationshape - The shape of the output tensor.seed - 2 seeds (shape [2]).dtype - The type of the output.StatelessRandomNormalpublic UniformCandidateSampler uniformCandidateSampler(Operand<Long> trueClasses, Long numTrue, Long numSampled, Boolean unique, Long rangeMax, UniformCandidateSampler.Options... options)
UniformCandidateSampler operationtrueClasses - A batch_size * num_true matrix, in which each row contains thenumTrue - Number of true labels per context.numSampled - Number of candidates to randomly sample.unique - If unique is true, we sample with rejection, so that all sampledrangeMax - The sampler will sample integers from the interval [0, range_max).options - carries optional attributes valuesUniformCandidateSamplerpublic <U extends Number,T extends Number> RandomGamma<U> randomGamma(Operand<T> shape, Operand<U> alpha, RandomGamma.Options... options)
RandomGamma operationshape - 1-D integer tensor. Shape of independent samples to draw from eachalpha - A tensor in which each scalar is a "shape" parameter describing theoptions - carries optional attributes valuesRandomGammapublic <U extends Number,T extends Number> RandomUniformInt<U> randomUniformInt(Operand<T> shape, Operand<U> minval, Operand<U> maxval, RandomUniformInt.Options... options)
RandomUniformInt operationshape - The shape of the output tensor.minval - 0-D. Inclusive lower bound on the generated integers.maxval - 0-D. Exclusive upper bound on the generated integers.options - carries optional attributes valuesRandomUniformIntpublic <V extends Number,T extends Number,U extends Number> StatelessTruncatedNormal<V> statelessTruncatedNormal(Operand<T> shape, Operand<U> seed, Class<V> dtype)
StatelessTruncatedNormal operationshape - The shape of the output tensor.seed - 2 seeds (shape [2]).dtype - The type of the output.StatelessTruncatedNormalpublic <V extends Number,T extends Number,U extends Number> StatelessMultinomial<V> statelessMultinomial(Operand<T> logits, Operand<Integer> numSamples, Operand<U> seed, Class<V> outputDtype)
StatelessMultinomial operationlogits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]`numSamples - 0-D. Number of independent samples to draw for each row slice.seed - 2 seeds (shape [2]).outputDtype - StatelessMultinomialpublic <T extends Number,U extends Number> RandomPoisson<Long> randomPoisson(Operand<T> shape, Operand<U> rate, RandomPoisson.Options... options)
RandomPoisson operationshape - 1-D integer tensor. Shape of independent samples to draw from eachrate - A tensor in which each scalar is a "rate" parameter describing theoptions - carries optional attributes valuesRandomPoissonpublic <T extends Number,U extends Number> StatelessMultinomial<Long> statelessMultinomial(Operand<T> logits, Operand<Integer> numSamples, Operand<U> seed)
StatelessMultinomial operationlogits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]`numSamples - 0-D. Number of independent samples to draw for each row slice.seed - 2 seeds (shape [2]).StatelessMultinomialpublic <U extends Number,T extends Number> RandomUniform<U> randomUniform(Operand<T> shape, Class<U> dtype, RandomUniform.Options... options)
RandomUniform operationshape - The shape of the output tensor.dtype - The type of the output.options - carries optional attributes valuesRandomUniformpublic <T extends Number,U extends Number> StatelessRandomNormal<Float> statelessRandomNormal(Operand<T> shape, Operand<U> seed)
StatelessRandomNormal operationshape - The shape of the output tensor.seed - 2 seeds (shape [2]).StatelessRandomNormalpublic <U extends Number,T extends Number> Multinomial<U> multinomial(Operand<T> logits, Operand<Integer> numSamples, Class<U> outputDtype, Multinomial.Options... options)
Multinomial operationlogits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]`numSamples - 0-D. Number of independent samples to draw for each row slice.outputDtype - options - carries optional attributes valuesMultinomialpublic AllCandidateSampler allCandidateSampler(Operand<Long> trueClasses, Long numTrue, Long numSampled, Boolean unique, AllCandidateSampler.Options... options)
AllCandidateSampler operationtrueClasses - A batch_size * num_true matrix, in which each row contains thenumTrue - Number of true labels per context.numSampled - Number of candidates to produce.unique - If unique is true, we sample with rejection, so that all sampledoptions - carries optional attributes valuesAllCandidateSamplerpublic <U extends Number,T extends Number> ParameterizedTruncatedNormal<U> parameterizedTruncatedNormal(Operand<T> shape, Operand<U> means, Operand<U> stdevs, Operand<U> minvals, Operand<U> maxvals, ParameterizedTruncatedNormal.Options... options)
ParameterizedTruncatedNormal operationshape - The shape of the output tensor. Batches are indexed by the 0th dimension.means - The mean parameter of each batch.stdevs - The standard deviation parameter of each batch. Must be greater than 0.minvals - The minimum cutoff. May be -infinity.maxvals - The maximum cutoff. May be +infinity, and must be more than the minvaloptions - carries optional attributes valuesParameterizedTruncatedNormalpublic <V extends Number,T extends Number,U extends Number> RandomPoisson<V> randomPoisson(Operand<T> shape, Operand<U> rate, Class<V> dtype, RandomPoisson.Options... options)
RandomPoisson operationshape - 1-D integer tensor. Shape of independent samples to draw from eachrate - A tensor in which each scalar is a "rate" parameter describing thedtype - options - carries optional attributes valuesRandomPoissonpublic <U extends Number,T extends Number> TruncatedNormal<U> truncatedNormal(Operand<T> shape, Class<U> dtype, TruncatedNormal.Options... options)
TruncatedNormal operationshape - The shape of the output tensor.dtype - The type of the output.options - carries optional attributes valuesTruncatedNormalpublic <T extends Number,U extends Number> StatelessTruncatedNormal<Float> statelessTruncatedNormal(Operand<T> shape, Operand<U> seed)
StatelessTruncatedNormal operationshape - The shape of the output tensor.seed - 2 seeds (shape [2]).StatelessTruncatedNormalpublic <V extends Number,T extends Number,U extends Number> StatelessRandomUniform<V> statelessRandomUniform(Operand<T> shape, Operand<U> seed, Class<V> dtype)
StatelessRandomUniform operationshape - The shape of the output tensor.seed - 2 seeds (shape [2]).dtype - The type of the output.StatelessRandomUniformpublic LogUniformCandidateSampler logUniformCandidateSampler(Operand<Long> trueClasses, Long numTrue, Long numSampled, Boolean unique, Long rangeMax, LogUniformCandidateSampler.Options... options)
LogUniformCandidateSampler operationtrueClasses - A batch_size * num_true matrix, in which each row contains thenumTrue - Number of true labels per context.numSampled - Number of candidates to randomly sample.unique - If unique is true, we sample with rejection, so that all sampledrangeMax - The sampler will sample integers from the interval [0, range_max).options - carries optional attributes valuesLogUniformCandidateSamplerpublic RecordInput recordInput(String filePattern, RecordInput.Options... options)
RecordInput operationfilePattern - Glob pattern for the data files.options - carries optional attributes valuesRecordInputpublic <U extends Number,T extends Number> RandomStandardNormal<U> randomStandardNormal(Operand<T> shape, Class<U> dtype, RandomStandardNormal.Options... options)
RandomStandardNormal operationshape - The shape of the output tensor.dtype - The type of the output.options - carries optional attributes valuesRandomStandardNormalCopyright © 2022. All rights reserved.